xilied Motion

34-2201: AM PROGRAMMABILITY

REVISION R1
12 JUNE 2014

7
llied Motion

TABLE OF CONTENTS

TADIE OF CONTENTS. ...ttt ettt ettt e b e et e sttt ettt e b et e abbe e s b e e e be e e sbee e sabe e s bt e sabeeesbneesaneesaneenas 2
INEFOAUCTION Lttt e st e e st e s s ba e e e e sba e e e s sba e e e s saba e e s snneeees 10
(6o] a1l o | S PO PUPP PP PPTRRPUPPPPIN 11
Program Organizational BIOCKScooiiiiiiii e, 13
Multi-Axis Program Organization BIOCKS.uuuuuueuei s 14
VATTADIES ..ttt e e et e st e e st e e e e s 15
ATTAY VATTADIES ..ttt nan 15
SCHEAUIING AN ALOMUICITY 1.vvvtiiiiiiiiiiiit s 15
AL ettt et e et e e nE e e e e R et e e e Rt e e e et e e e R R et e e s n et e e s r et e e st e e nn e e e s nannes 17
AL SYNTAX 1ttiieeeieietiiiiiee st e e et ttise e e e e et ettt s e e e eeeetaaaa e eeeeaanesaa s eeeeeaeasaasseeeeeenssannneeeteenetannseeeeeeentrnnseeeereenrrnnnnnes 17

F NI (o] =T o o [UPPR 18

F AN T O o T=T =) o] PP PPPPNt 18
LN ¥ o Tot f [o 1= PP PP UPR PP 19
BasSiC STAtEMENTS ...eeiiiiiiiiie et e e a et e e e s 20

F AT F =4 a1 4 =T o PSPPSRt 20
=1 AT STRRPRO 20

L T ettt aaaaaas 20

L TN EISE e 21
2L PP TP PP PPT PP 21

F [oYt Y o T W A VA=Yt (o1 o F PR PSRR 21
AlIOCALION (TADIE)..uuttriieeeeeeeiiitee ettt e e e e ecc e e e e e e e e bbaaeeeeeeeseabbaaeeaeeeessassbbaaeeaeessasstbaeeeaeessannstbaeeeaaeens 22

R AV Ta T o1 1) T U PPURROP 22
UNEINK (VAFHDIE) ...ttt e e e e e et e e e e e e e s e aat b e e e e e eeeseaabbaaeeeaeesaaatbbaeeeaeeesannsrraens 22

(0 T (=N AV T Lo 1= IO PSP PUPPRRRR 23
Program FIOW Stat@mMIENTS.uuuiiieiiiei e e e e e e e e e e e e e e e e e e e aaaaaaaaaaanns 24
1] o= T PSP PP TP PP UPPUPTPPRRPN 24
LCT o] o TP PP P PP PP PP P PP PP PPPPPPPPPPPPPPPPPPR 24
Yo (o TSRO 25

L 1 OO O O O S S PP PP PP PP P PPPPPOP 25
WVAIE/UNTIL .ttt ettt ettt b e e h e e s ab e e s a b e e e bt e e sbbe e sabeeeabeeeabeeeabeeesabeesabeesabeeenaes 25
VAT UNEI ATEOE <o ssssssnsssnsssnsnnsnnnnns 26

POB CONEIOl STALEMENTS ettt ettt ettt ettt e ettt e e et bt e e s aabe e e e s abbe e e e aabaeeesaubeeeesabbeeesanbaeeesanbeeanas 27

34-2201 Allied Motion Programmability Standard | Table Of Contents

»dlied Motion

SEAME/RESTAIT POB ...oeiiiieiiieeieee ettt eeee e e e e et ee b e e e e e e e e e abaaeeseeeeeasstsaaeesaeeesaaabbaeeseeeseesstrareeeeeesannes 27
SEOP POB ..ttt ettt ettt e ettt e e e b bt e e e a bt e e e e aa bt e e e e h bt e e e e b bee e e aabbeeeeaabbeeeeaabeeeesbbeeeeeabees 27
SUSPENT POBeeiiieee ettt ettt e e ettt e e e e e st e et e e e e e e s aab b e b e eeeeeeaaanbb bbb eeeee e s s anbbbeeeeeessaannbbneeeeeessannne 27
UNSUSPENT POB ...ttt ettt e ettt e e e e e sttt e e e e e e s anb bbbt e eeeeesaaanb bbb e eeaeessanbbbbeeeeeessannnreneeas 28
BN (POB) .ttt ettt ettt ettt ettt e e ettt e ettt e ettt e e e e bt e e e e bt e e e e atbeeeenbae e e e nbe e e e anbbeeeeanbteeeabbeeeeeanbeeeeabreeenaa 28
[O CONTIOl STAEMENTS ...ttt ettt e e e e e e sttt e e e e e s s abb b et e e eeeesaabbbbe et eeessaanbbbeeeeeessannnrnneeas 29
Y1 O LU o 10 PP 29
PUISE DULPUL. e aaeaaeaaaaaaaaaaaaaes 29
DEFINE PLS .ttt ettt et e e et e s e r et e e s et e s s e e e s araeeesaa 29
ENADIE/DISADIE PLS ..o 30
ATy T T T T =Y A | 30
2] FoTol QY = 1= 41101 PO PP PR OPTPRROPRRR 31
LN o] o PP PP PO PP 31
KV a1 G Ta =T 1V PRSP 32
KV T T =T 1V TR PSR 32
0=T 01T | SO PP RSP RTOPPRTTPPPRTPPPRE 33
=T 01T | SO PP OTT TP TPPPRTPPPRE 33
WL e ettt e e et e st e e e e e n e e e e R et e e r et e e R E et e e e n et e e r et e e s e e e e nn e e e e nnees 33
O (AXES) ettt eeeeiitteeee e e eeeectt et e e e e e eeetettaaaeeseeeasasabaaeaeeeeaaastaaaeeaeeeaaastaaaeeaeeeaaaastbaaeeeeeeaaaaabaaaeaaeeeeaantraaeeaeeesaants 34
L g =P PSP PPPPPPPPPPPPPIN 34
EVENT STatEMENTS ..oiiiiiiiiiiiiiiiiiiiiiii bbb 35
(0 - T SO PP PRSP PPROP 35
MOTION STAEEMIENTS. ..ttt e e e e s s st e e e e e s s sn b a e et e e e s s snrnaees 36
Target Generator OPerating States ...cccvuiiiiii et e e e e e et e e e e e e e e tt e eeeeeeattraaeeeaeaennsnnn 36
(L] [Y ol T o Iy = = g 1= o (USSP UUURRSURRRR 38
[o F= o] [N (DT 1Y) USRS 38
(D111 o L (D ¢ V7<) U UUUUUSUURRRS SRR 38
Y Lo} A ToT o) o] O TSRO 38
1= LT N L= OO PPN 38
LA -1 -0 ST 39
(0§ Y A =1 7= =] PP PPPPPPPPPPRt 39
ZEF0 FOIOWING EFTOL .t nnnnnnnnnnnnnnnnnnnnnnnnnnn 40
ZF0 TArGEt (POSITION) ..uuuuiiiiii e nnnnnnnnnnnnnnnnn 40
(0o 0] o] LIV -1 (=] PP OPPPPPPPPPPPPPPPRt 40
A T e T [W e] o] o) PP P PP PPPPPPPPPPPPRt 41

34-2201 Allied Motion Programmability Standard | Table Of Contents

»dlied Motion

IMIOVE VUL .ttt ettt ettt e ettt e e e a bt e e e e abe e e e sabbee e e aabbeeesaabaeeesabbeeassabbeeenans 41
LT T A VA T (U T | P UPPR PSP 42
(ENter) POSItioN SEEK IMOE.........uiiiiieii e ettt e e e e e e e e st e e e e e e s saattaeeeaaeessaatbaeeeaaeesannnseaees 42
(EXit) POSITION SEEK IMOE ...coiieeeiiiieeee ettt e e e e e e e e e st e e e e e e e s satttaeeeaeeessantbaeeeeeeessnnnsranes 42
Simple Motion StatemMeNnts (ADSOIULE)........cciiuuiiiiee et e e e e e s e e e e e e s st rae e e e e e s e ssantraeeeaaeessnanes 43
1Y L0371 TP PTPPPT PP 43
1Yo Y= N o I PSPPI 43
IMIOVE TrAP TO einiieiiiee ettt ettt ettt s et e e e et e e e et e e e et e e e aaaa e e aban e easansesasan s eeasaneansansaensnnseensnnseennnnens 44
MOVE TN TO 1 44
MOV AIEEE TO..eie ittt ettt et e e sttt e st et e e n et e s sbn et e s aar et e e s anre e e s snneeessnraeeenans 45
Simple Motion Statements (INCremMeNntal)..........uvveiii e i e e e e e e e s rae e e e e e e s eanes 46
1Yo Y= T PP O PP PP PPPT 46
Y (oY= AN o PO PP PPPT 46
Y o)V = o I 2o | OO PSP TSP UPPRTPPPRTPRE 47
YT AT < o T o 47
Y ToN T A =T ol oo | PP PP PT RO PPRP PRSI 48
Position-Based Velocity Motion Statements........cccoeeeeeeee e 49
PBY BN EXIT ceeeeeeeeeeeeeee oo et et e e e e e e e e et e et et e e e et e e et ettt at et et ettt ettt ettt ittt aaaaaaas 49
PBV Al ittt ettt ettt e e e e et e e n et e e b et e e R et e e e n R et e e e R R et e e e R Rt e e e s r et e e e anreee e s nreeesarreeenan 49
oLV o« JO PP ST PT PP PPRPPOPRRP 50
(00o] 0] o] 1o 1Y, Lol T g I €= 1 (= 0 g T=] o YRRt 51
L0V To Y= A S o PP PP PPPPPPPPPPPPPIN 51
LAY To = AN o o PP P PP PPPPPPPPPPPPPN 51
Table-based MotioNn SEAtEMENTSeiiiiiiii ittt e st e e st e e s snbeeessabreeenaes 52
TABIE (ClEAI) e, 53
L LTS Ve [) F P PP PP PP PPPPPPPRPPT 53
TablE (FIrOmM Fil@) e, 53
S TUT] o Y o] 10 1= U U USSP UUU SRS 54
BUIIA (LINBAK) ettt e aaaaaaaaaaaaaaas 54
BUIIA (BSPINE) ettt e aaaa e 54
L1117 [O P O P T PP P PP PP S PPPPPUPPPPTNt 55
TAbIE S0P oo 55
(67N R =T OO TP PP UPP I PPPPPOP 55
(67 N1V R o]« O T TSP PP PP PP PPPPPOP 55
Following Motion Stat@mMENTScccoeeeeeeeeee e, 56

34-2201 Allied Motion Programmability Standard | Table Of Contents

»dlied Motion

FOIOW ENTEE / EXIT c.neuvvviieeeeeeeeetieee e eeeettee e e e ee et e e e e e et e et eeeeeeeeeeattaaeesseeeeesatbaaeeeaeesaanstbaaeeeeeeesanssrrneess 56
LCT= T N PP PP P PP PP P PP PP P PP PP PP PPPPPPPPPPPPPPPPPPPPPRY 56
LG o N o 1 o B PP P PP P PP PP PPPPPPPPPPPPPPPPPPPRY 56
LCToE T 1 Y = PP 57
LCT=T o oo T ol [o O PP PP PP PP P PP P PP PP PP PPPPPPPPPPPPPPPPPPPR 57
LCT=E o o gl [I =T PR 57
OFFSEE SIAVE ...ttt et e st e e e et s e s e e e e 58
WAIE SIAVE .ttt et s e e s e e e e e e e e 58
WAt IMTSTEE e e e e e e e e e 58
C1EAI COUNTEIS ...ttt et ettt ettt e st e e st e e e s s b e et e s s b b et e s s b et e e s an b et e s snreeessnneeessanes 59
WAt WIEhiN .t e e et e e s e e e s n et e st e e s nr e e e e snre e e e sanes 59
WAt NOT WIthin. ..t e s e e st e s e e e s e e sanes 59
ANt BACKUP (ONJOTT) 1.ttt e e et e e et e e e e e tbe e e e sbb e e e e eabaeeeseabeeeesbbeeeeeataeeesnsreeeesnsres 60
L T (@ L0 7= = SRR 60
Y L3V S 1<) ISP SPRR 60
INPUL EVENT STat@mMIENTS .ottt e et e e e et e e e et e e e et e e eeea s e eeba s eeasanseaarnnseeesnnsaennanane 61
Defing EVENT (INPUL-TIIZEEIEMA)uuiiiieeeeiciiiee ettt e e e e e st e e e e e e e e ettt r e e e e e e e s s aabbaeeeeaeesanantbraeeeaeeesannnrraees 61
L6 o e 14 To] oIS P TP PPRPRPN 61
(CF 1=l (e TaTe [uToTs) I PURRPN 61
ALV Ta Yo o3V A (oY a Vo L] 4o o) F U PURPPN 62
(010 23 o LR AV i aTe TNV (0o aTe [ToT o) I P URPPN 62
¥ 1 o] o PP PP PP PPPTPPRRPN 62
Clear Counter (ACTION)....cccc e, 62
Enable/Disable 10 EVENT (ACHION) ...cccuiiiieei ettt ettt e e e e e sttt ae e e e e e e e e ettt be e e e e e e s s eabbbaeeeaeessenasbsaeeeaaeens 63
COPY (ACHION) e 63
SEAMT (ACTION) e 63
QUEUE (ACLION) 1o, 63
Enable/Disable EVeNnt (INPUL-THZEEIE)uuriieie i e ettt e e eeecrre e e e e e e e et b b e e e e e e e e e eabbraeeeeeeesenarraeees 64
INPUL EVENT ODJECES ..o e 64
CommMUNICAtION STAEMENTS ...oiiiiiiiiiiiiiiiiiiiiiiiiiiii e e e e e s a e s e e e s e s s e s s sasasaaasaasaasaaaaaae 65
UNSOHCIEEA IMBSSAEE ... oot e aaaa e 65
) A =T 4 PP PP P PP PP PP P PP PP P PP PP PP PPPPPPPPPPPPPPPPPR 65
Communication EVENT STatemMENTSuuiiiiiiiiiiiiiiiiiiiiitiii e 66
Define Event (Communication Triggered).........cooooieeiiiiiii e 66

34-2201 Allied Motion Programmability Standard | Table Of Contents

»dlied Motion

(60 3 Vo 11 AT] o[- TSSO PP PP PPPTPPPPPPN 66

[(@leY oo [14TeY o) ISP PPPPPPPPPPPPPPPRE 66
Yot o o [P P PP PP PP PP PP PPPPPPPPPPPPPPPPPPPPR 67
Enable/Disable Communication EVENt (ACLION).......uiiiiiririirerieerieeeieeerieeesiieesieesieeeseeeeseteesbessaeeeseneesnneas 67

(0] o1V Yot o T) PP 67

SEAMT (ACTION) ettt et ettt e b et bt e s a bt e st e e e b et bt e s e bt e e b et e b et e en et e nar e s r e e e re e e 67
Enable/Disable Event (Communication THZZEred).......cocuiiiiiiiieeeeiiieeeeeree e ettt eeetre e e eeree e e eebeeeeserreeeeebaeeeenns 68

POB FIIAS ...ttt et e e et e et e e st e e et e st e e e et e e st e st e e s e e e e e 69
ST L= 0 IV T =1 o1 [P PPPPPRPRE 70
SEATUS VarTabl@S ... ittt et e s e 70
TIMEE VATIADIES ...ttt et e st e s s r et e s s en et e e s n et e e sn e e e s saneeeenaes 70
Target GENEIator Vari@blEsS.uuuiiiiiiiiiiiiiiiieeeeeeeteeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeeeeeeesesesessesssssesssssssssssssnssssssssnnssnnnnsnnnnnnnns 71
Target Generator Variables (FOIOWING)cccuuiiiiiii et e e e e e st e e e e e e s s saarae e e e e e e s ennsraees 72
Communication and COMPIIEr SUPPOITeeviiieiiiieiieiieieeieeeeeeeeeeeeeeeeeeeeeeeeraeaeeereraeareerereeerreereerrrrrrrrrenrnrnnsssnsnnsssrnnnns 74
AMLCoMPIler. AMLCOMPIIEE Classccciiiiiieieee e, 74
ALLNET.IP ClaSS. 1t ttettieiuuiittteeeeeeniiiitttteeeeessasuttttteeesessauattetaeeeessaassttbaeeeeessaassstaaeeeeesssaasbbeaeeeaesssnssbbaeeeeesssanssrnens 74
ViIrtURL IMTACRINE ... ettt e st e e st e e s n et e e s ar et e s amr e e e e s et e e sn e e e e nannes 75
RV =Y < =T PSSP 75
OXOOLX CALLX OffSOL..cceeeeeeeee e e e e e e e e et e aaaaaaaaaaaaaens 76
(000101 01V IS I = PO PP UPPPPPTN 76
(0010 B 1Y R I PSPPI 76
0x0100 PUSHCI int32 0x0101 PUSHCL int64 0X0103 PUSHCD flOGt64............uuvveiieiiiiiiiiieeeeeesiniiiieee e 76
OXO0L106 PUSHX FlAGS, VA .ottt e 76
OXOL07 STORX FIAGS, VAT et e aaaaaas 76
OXOLL0 ATBEG ... eeeeeeiiiiiiee et e ettt e e e et ettt e e e e e e ettt e e e e et eeeeaa e e eeeeeesaa e e eeeeenesna e eeeeeeeesnaa e eeeeeeenrnneaeeeeeennnnn 77
()0 B A I =31 PP UUPPPTPPTN 77
OXOL20 AXIS GXES ..o e aaaes 77
OXOTL2T AXEND. ...ttt ettt ettt e e e e e e ettt e e e e et etetaa e e e eeeeteaaa e e eeeeea e b aa e e eeeeeeebn e e eeeeeeebaa e eeeeeeenrnan 77
0x0200 CMPEQ 0x0201 CMPNE 0x0202 CMPLT 0x0203 CMPGT 0x0204 CMPLE 0x0205 CMPGEccceeeeeeee 78
0x0206 LOR 0X0207 LAND OX0208 LNOTeuuieeeeeettiiniaeeeeeettiiaa e e e e eetettaaeeeeeeeattnaaeeeeeeeessnaa e aeeeeeessnnaaaeaseeensnnn 78
0x0209 BOR OX020A BAND OX020B BNOT......ueeeeeeeiiiiiaeeeeeetttie e e e eeeettiaa e e e e eeeattna s e eeeeeeesbna e eeeeeeessnaasaeaeeeensnnn 78
0x020C ADD 0x020D SUB OX020E MUL OXO020F DIV ...ttt ettt e e e e ettt e e e e e e eeabaa s e e eeeeeeeaan 78
OXO2L0 NEG. .ttt ettt e e e e ettt e e e e e e ttttua e e eeeeeteeaa e e eeeeteeaa e e eeeeeatbaa e eeeeeeeeban e aeeeeeenbaa e eeaeeeenraan 78
(0001 1Y/ [0 1 5 L PP TP PP TUPPPPPPPRN 79

34-2201 Allied Motion Programmability Standard | Table Of Contents _

»dlied Motion

(001022 2N 1 DO PP ST PRTUTPPRPTP 79
OX0213 ABS ...ttt ettt ettt e et e e e bttt e e e b te e e e aatte e e e bttt e e ettt e e e ahbteeeahteeeeaabaeeeeahbeee e e bbeeeeabaeeeeaabaeens 79
OX0225 TINPOS ...ttt ettt ettt ettt e ettt e ettt e e e sttt e e e abae e e e ataeeeaasbeee e abaeeeaabaeeesasbeeesaabaeeesanbaeeesnbbeeessabaeeesnnbeeess 79
(0O L O T o ¢ - PP 79
(0 O R = TR 1 o] K e ¢ - PPN 79
OX0270 PS ON ..ttt et te et e e ettt e ettt e e ettt e e sttt e e e abee e e e ataeeeaasbeee e ataeeeaanbaeeeaasbeeesaabeeeeanbteeeanbaeeesebaeeeeabaeeas 79
OXO27L PS OFF ..ottt et e e e e bttt e st e s e bt e e s b et e e s a e e e e n et e e e a e e s e ae e e aree s 79
OXO272 RESET ..ttt ettt ettt et e e e e et e e e et e e b et e e e b e et e s eabn et e s ar et e e s b r et e e aarae e e s anae e e sareee s 79
OX0273 RET .ttt ettt e et e e et e e e et e e b et e e s n et e e e bt e e s r et e e e nr et e e e et e s srae e e s areee s 79
OXO0280 ALVEC VEC.....eeeeiuiiiieieiieee ettt ettt ettt e sttt e st e s e et e s r et e s sab et e e s mr et e e sanae e e s anraeeesnneeees 80
OXO28TL ALTBL BB ...ttt ettt et et et e s e e e s st e s n et e s st e e s n e e e s et e s e e e s ns 80
OX0300 BR QAN ...ttt et ettt e et e st e e e sn e s et st re e s ae e s s 80
OXOB0L BRZ QAN ...ttt ettt e et e st e s st e s st e s st e e s e e s ae e e s 80
OX0302 BRINZ QAU ..ottt ettt e st e e s st e s asn et e s s an et e s anr et e e sanne e e s snnaeeesnneeees 80
OXOBLL BTZ QUGN ...ttt ettt et e st e e st e s sn et e s s ar et e s s e e e e s rne e e s s anaeeesnreeees 80
OX0312 BTNZ QAT ..ottt ettt ettt e et e e s st e s asn et e s san et e e s s r e e e e sarne e e s snnaeeesnneeens 80
OX0320 BSUB QAeeeenieieeeeieee ettt ettt ettt ettt e et e st e s asn et e e et e e e R e e e s e e s ae e snreee s 81
OX032TL BSUBZ QAU ...cconeieeeiee ettt ettt ettt et e et e et e s asn et e s san et e s an e e e san e e e s snrae e e snreeees 81
OX0322 BSUBNZ QAU ...ttt ettt et e et s et e e st e s sab et e s nr et e e sanne e e s snraeeesnreeens 81
OX0303 WRISE M.ttt ettt ettt ettt e ettt e sttt e ettt e e st e e ab b et e s mr e e e e aas s et e e sanr et e s amna et e snr et e e sasneeessnnneeesnreeens 81
X030 WFALL 1.ttt ettt ettt ettt e et e e ettt e et e e r e e e s s et e e sanr et e s smb et e e s b b et e e s rne e e s anrneeesnreeens 81
OX0306 WINPOSoeieeeiitee ettt ettt e e ettt e sttt e sttt e st e e e e st e e e e b b et e s m s et e e aas s et e e sanr et e s amneeeesnreeeesarneeesannneeesnreeens 81
OX0307 WAITQUN, flOGS, VAT ittt ettt ettt e e sttt e e e e s s sttt e e e e e e s sabbb bt e e e eessassbbbbeeaeeesaassbbaaeeaesnns 81
OX0400 START OB, flOGS....ccccaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e 82
OXOAOT END....ceieieiiitteeeittee ettt ettt e ettt e ettt e ettt e s amt et e e s st et e e ab b et e e mbaeeeaas b et e e amb b et e e ambaeeeaabbeeeeanbbeeeeanbneeennreeens 82
O0X0402 ABSUS POD, fIAGS ..o 82
OXOA03 MSTOP flOGS..eeeinutteeeeiitee ettt ettt e e ettt e sttt e e s ettt e e et b e e e s st et e e aasbeeesambbeeeeaabaeeesnbaeeesabbeeesanbaeeesnreeens 82
OXOA0A DREN. ...ttt ettt ettt ettt ettt e ettt e ettt e ettt e e e s te e e e aabb e e e e abaeeeaas b e e e e aabb e e e e mbeeeeaabbeeeeanbbeeesaabaeeesanbeeens 82
OXOA0OS5 DRDISeeeeittteeeittee ettt e ettt e ettt e e ettt e e aabbee e s abaeeessteeeaaabb e e e e abeeeeaanbeeeeaabb et e e anbeeeeabbe e e e anbbeeeeaabaeeesaabeeens 82
OXOA0T DELAY....ceeettteeeittte ettt ettt ettt e ettt e ettt e e st et e e s s te e e e ab b et e e abb e e e aan b e e e e aab b e e e e anbee e e abb e e e e anbbeeeeanbaeeeeanreeens 83
OXOAOB ZEROeeeeueeteeeittee et tee e ettt e ettt e e e ut et e ettt e e s aba e e e easbe e e e abb et e e nbbeeeaanbe e e e aa bt e e e e R b ee e e e bbe e e e anbbe e e e anbaeeeeanbeeens 83
OXOA09 RELAX. ...t eittteeeittee e ettt e ettt e ettt e e e at e e e aabte e e e abbe e e e anbaeeaaabbee e e abbeeeeasbaeeeaabbeeeeambeeeesabbaeeeaabbeeessabaeeesanbeeens 83
OXOAOA SETT fIAGS. ... e 84
(0007101 @ 1U N Tl oY1 Ko] i i o Y1 K- ORI 84
OXOAOC SETOUT ONDIES.c...eeeeeeee ettt ettt ettt e ettt e e e bttt e e s abb e e e e bt e e e e aabt e e e e aabeeeesabbaeeesabbeeesanbaeeesnbeeens 84

34-2201 Allied Motion Programmability Standard | Table Of Contents

»dlied Motion

OXOAOD CLROUT OffDItSeeeeeeiee ettt ettt ettt ettt e e ettt e ettt e e sttt e s aabe e e e s abbe e e s sabbeeesaabaeeesabbeeesaabaeeesabaeens 84
OXOAOE PULSEOUT 11 .ttt ettt ettt ettt ettt ettt e ettt e e et e e e ettt e e e abbe e e e anbaeeeaabeeeeeeabbeeesaabaeeesabbeeesanbaeeesanbaeens 84
OXOAQF PLS flAQS, V, N, PCOUNT, CPGIIS «.cneveeeeiiee et e ettt e e et e e et ee e e tte e e e atee e s sabt e e s sabteeessabaeeesnbbeeessabaeeesnabeeess 85
OXOAL0 PLSON N, FlAGS ..ttt ettt e ettt e et e e e ettt e e sttt e e e aba e e e sabbe e e e s abaeeesnbaeeesnbbeeessnbaeeesabeeess 85
OXOA20 TIMBEG GAAY ...ttt ettt e et e et e e e e ettt e e s abte e e e abaee e sabteeessabaeeesaabaeeesnbbeeessabaeeesnnbaeess 85
OXOA2TL THMENDiieetiiiiiee ettt e ettt e e e e e e ettt e e e e e e eaetaa e e eeeeeaesaaa e eeeeaesssaasseeeeaesssanssseeeseensssnnsseeeseennsnns 85
OXOA22 POBSTAT OB, Moottt ettt e aaaaaaaas 85
OXOAB0 LDT X uuuteeeeiieieeeireee ettt ettt e et e et e st e st e e et e e e e e abe et e s mr et e e e s b et e e aan et e e e ar et e e e nr et e e e a et e s srae e e s nreee s 86
OXOABL INCT ..ttt ettt e et e e et e e e e e e s et e e e st et e s eann et e s amra e e e enr et e e arne e e s srae e e s nreee s 86
OXOA3B2 DECT ..ttt ettt et s e e et e e et e et et e e e et e e e bt e s r et e e e n et e e e a et e s s ae e e sareee s 86
OXOA3B3 PUSHT ..ottt ettt et et e e e st e ettt e s mr et e e s s et e e san et e e s mr et e e snr et e e amraeeessnnneeesnneeens 86
OXOA3B4 POPT ...ttt ettt ettt e et e e et e ettt e e r et e s st e e an et e e mr et e e e s et e e e R e et e e R R et e e e nr et e e a e et e s enaeeesnreee s 86
OXO435 TRIGN....ceiiiitieeeiteee ettt ettt e et e et e s et e s st e e e ar et e s mr et e e aanr et e e san e et e s mn et e e snr et e s anraeeessanaeeesnneeens 86
0x0504 ONFAULT pob, flags 0X0504 ONFAULT IGNOREcccutttiiiiiieeriiiee et 87
OXOB00 STACK M.ttt ettt et e et e ettt e st e e s st e e s st e e e s mr e e e e aas e et e e sanr et e s amne e e e s anreeeesarneeessanneeesnneeens 88
OXOB02 DRAD GO ..ottt ettt ettt et e e e et e st e e s st e s aan e et e s aan et e e ssree e e sarneeessmraeeesnneeens 88
OX0B603 DATA ENAAAANeeeiieeeee ettt ettt ettt e s et e e sn et e s e r et e s s e e e sr e e e s anraeeesnreeens 88
0x0610 LINK dvar, flags1, varl, conl, flags2, var2, con2, offset, min, Max............cccccccceveeiieiiiiiiiiiieiieeeeeeeeeee, 89
OXOBLT UNLINK QUG ..cccneiiieeeiiiee ettt ettt ettt e ettt e st e s as et e s asne e e e s saba et e s b r e e e e sanneeesanraeeesnreeens 89
OXOBL2 CAPTURE ...ttt ettt ettt ettt et e ettt e et e e st e e ab et e e ar et e e sas et e s s r et e s smbe e e e snreeeesarneeesannneeesnreeens 89
OXOBL3 CAPABORT.....eee ittt eeitiee ettt e ettt e e sttt e ettt e et et e e e st et e e e s b e e e e s s aeeeaas b et e eamsre e e s amre et e snr et e e sarneeesannneeesnreeens 89
OXOBLA UMSG POIL, fl.cneeeeeeeiiieeeieee ettt ettt ettt e sttt e st e s st e e s b et e s san et e e s sr et e e sarne e e s anraeeesnreeens 89
OX0615 TBLOP tADIE, COMMONG........coeeeeeeeeieeee ettt e ettt e e e e et e e e e e e e e bt eeeeeseesbbbaeeeeeseesasaes 90
(0)1(0121010 M@ W3 @N'o XYoo 1o ¢ Lol o 0 XYoo 0 ¢ TS 91
OXOBOL WOCW N, fIAGS...caaaaeeee aaaaaaaas 91
OXOBO2 ANTIB 1 .eeeuieiieeeiiteeeeittee ettt e et ee e sttt e ettt e s nbeeeesasbaeeeaasb e e e e nbaeeeaanbaeeeaabbeeeeanbeeeesnbeeeesabbeeesanbneeesnreeens 91
OXOB03 COUPLE SICyM ceeuitieeeeiitee ettt et e ettt e s et e e ettt e e ettt e e aab et e e sanbe e e e aabb e e e s ambaeeesnbeeeeaabbeeesambaeeesnreeens 91
OXOBOA WAITV ..ottt ettt ettt ettt ettt e e ettt e ettt e e e st b e e e e s te e e e abb e e e e nbbeeeaasbe e e e ambb e e e e ambeeeeanbbeeeeanbbeeeesabaeeesanbeeens 91
OXOBOS5 MV _START ...eteeiittieeeittee ettt e e et ee e sttt e e sttt e e e sbeeeeeastaeeeaabb e e e e nbbeeeaasbeeesambe e e e e ambeeeesbbeeeeaabbeeesanbaeeesanbeeens 91
OXOBOB MV _ALTER.....ceeeittteeaitteeeett e e et ee e sttt e ettt e e s sttt e e e s taeesaabb e e e e abaeeeaasbeeeaamb bt e e e ambeeeesbbeeeeaabbeeesanbaeeesnbeeens 91
OXOBO7 MV _STOP ...ttt ettt ettt ettt e ettt e ettt e e sttt e e e bttt e e abb e e e e abaeeeaasbeeeeanbbe e e e ambbeeesbbeeeeaabbeeesanbaeeesnbeeens 91
OXOBOB F_ENTER........eeeeeittteeeittee ettt e e et te e ettt e e sttt e e e abteeeeantaeeaaabb e e e e abbeeeeanbeeeeaabbeeeeaabeeeesabbaeeesabbeeesanbaeeesanbeeens 92
OXOBO9 F_EXIT ..eeeeiitieeeitteeeeit et e ettt e ettt e e e ab et e e s abt e e e e sbbeeeeaabee e e abbe e e e abaeeeeasbeeeeaabbeeeeambeeeesabbaeeeanbbeeeeaabaeeesanbeeens 92
OXOBOA GEARAT ...ttt ettt ettt ettt e ettt e ettt e e sttt e e e aba e e e et b e e e e abbeeeaanb e e e e sabbe e e e aabbeeesabbaeeesabbeeeseabaeeesaabeeens 92
OXOBOB GEARFOReeeieititeeeitiee ettt e e ettt e e ettt e ettt e e abe e e e e s ba e e e e bt e e e e abbeeeaanbeeeeaabbe e e e aabbeeesbbaeeesabbeeesanbaeeesanbeeens 92

34-2201 Allied Motion Programmability Standard | Table Of Contents _

»dlied Motion

OXOBOC WAITS ..ttt ettt ettt ettt e ettt e ettt e e e bt e e e e abe e e e e abte e e e bt ee e e abbeeeeanbaeeeaabbeeesaabaeeeabbaeeeaabbeeeesabaeeesanbaeess 92
OXOBOD WAITIM .ttt ettt ettt ettt ettt e ettt e e ettt e e e abt e e e e a bt e e e e abb e e e e abtee e e st aeeeeaabeeeeeabbeeesbbaeeesabbeeessabaeeesanbaeess 92
OXOBOE OFFSLV ...niiiieeeitieeeeitte e ettt e ettt e e et e e e ettt e e e abaeeeeataeeeaasbeee e abaeeeaaabaeeesanbeeessabaeeesasbaeeesnbbeeassabaeeesnnbaeess 92
OX0900 IEVTDEF N, trANS, QiN.....ccovveeeeeeeeeeeeeee ettt e ettt e e e e e e e e et ee e e e e e e s eaat e e eeaeeeesstaa s eeaeseeastanneeeeseersrann 93
OXOO0L TEVTENDettieeeitieeeeittee ettt e e ettt e e ettt e e e sttt e e e abaeeaeataeeeaasbeeeeanbaeeeaanbaeesaanbeeessabbeeesnbaeeesnsbeeessnbaneesnnbeeess 93
X002 TEVTE N.tteiiiiiee ettt eeit e e ettt e e e sttt e e s ateeeesaatee e e abaee e e ntaeeeaasbeee e abaeeeaanbaeeesasbeeessabbeeesnbaeessnbbeeassabaeeesnnbeeess 93
OXO903 TEVTD N ettt ettt ettt ettt e st e e et e st a e e s e sr et e s snr et e s embae e e snr et e s sarne e e s sanaeeesnreeees 93
(00 L RO YA LT N I S /1 T 1 [(=2 93
0X0911 [EVTWIND flags, VAr, MiN, MOX c.cccccoeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e e e e 94
0x0912 [EVTWIND flags, VAr, MiN, MGX ..ccccoeeeeeeeeeeeeeeee e e e e e e e e e e e e 94
OXO0930 [EVTCC N, flOGS...caeaaaeeeeeeeeeee ettt e aaaaaaaaaaes 94
OXO93L HEVTED N, flOGS ceeeeeeeeeeee ettt e aaaaaaaaaes 95
0x0932 IEVTCPY srcflags, src, destflags, dest ...coeeveeeeeeeeeeee e 95
OX0933 [EVTST POD, flOGS .ot e aaaaaaa s 95
(0O R Y N A AN O o o Ko | o SRS 95
OXOAQDO CEVTDEF N, POIT ..eeeeiiiee ittt ettt ettt e et e s st e s st e e san et e s amn et e e s anr e e e e sanne e e s snnaeeesnreeees 96
OXOADL CEVTEND.....cettiiiiieeeiittee et ee e et ee e ettt e ettt e st e e s s e e e e st et e s mr et e e aasreeesaanr et e e smne et e snreeeesarneeessnnneeesnreeens 96
OXOAD2 CEVTE NM.niiiieeeiieee ettt ettt ettt e e st e et e st e e s st e e as et e s mr e et e east et e e sanr et e s amn et e e snr e e e e sarneeessnnneeesnneeens 96
OXOAD3 CEVTD M eeuiiiieeeiiitee ettt e ettt e ettt e e et e sttt e st e e e st e e aab e et e e nr e e e e aas s et e s sanr et e s ambae e e sn b et e e sanneeesannneeesnreeens 96
OXOAL0 CEVTID N, i1, iU2,) IO« ettt ettt et e e e s snne e e snreee s 96
OXOA30 CEVTED N, flOGS ...vveeeitiee ettt ettt ettt e et e et s et e e st e s amn et e e s nr et e e sarne e e e nnraeeesnreeens 96
0x0A31 CEVTCPY src, flags, dest, destflagsccooveeeeeeeeeeeeeee, 97
0X0A32 CEVTST qflags, POD, flAGS.......cooo oo 97
CALLX OFfSEE TABI@....eeeeeneeee ettt ettt e sttt e e s bt e e s aab bt e e e aab et e e sbbeeeesabbeeesanbaeeesnreeens 98
POB EXAMIPIES ... e ann 99
HOMING 10 @ ard SEOP cooeeeeeeeeeeeeeeeeeeeeeeeeeeee e 99
Y] o LT T 1= (=T P PPPPPPRt 99

[VT o=] o 1T | U U U USRS PRSP 100
ROTAIY KNT .. e e e e e 101
Limit SWItCh HOMING .. 102

34-2201 Allied Motion Programmability Standard | Table Of Contents _

xilied Motion

INTRODUCTION

This document defines the Allied Motion Programmability Standard (AMPS).

The purpose of this document is:

1. To define a motion language and an associated run-time that is used in all programmable drives across

TU’s that:
a. Encourages commonality of firmware and features;
b. Minimizes development time and cost;
c. Minimizes customer support while enhancing familiarity through use of a simple but powerful
language and programming/commissioning tools;
d. Is extensible and flexible enough to meet the widest variety of customer applications;
e. Can be easily extended for multiple axis operation.

2. Toinspire discussion and communication among drive design and application engineers.

34-2201 Allied Motion Programmability Standard | Introduction

xilied Motion

CONCEPT

In general, user-programmable drives consist of three components:

1. A means to describe the intended logic and desired motion,
2. A means to translate the aforementioned logic and motion into a form suitable for execution in the drive,
3. Afirmware run-time system to execute the translated logic and motion.

For the AMPS implementation, these components are:

1. A programming project containing one or more “program organizational blocks” (POBs) written in a “C”-
like, text-based programming language (AML),

2. Atranslator that converts the project’s POBs to a series of opcodes (“operation codes”) suitable to be
executed by the firmware-based run-time,

3. Avirtual machine run-time (VM) that interprets and executes the opcodes.

The diagram on the following page illustrates the implementation.

34-2201 Allied Motion Programmability Standard | Concept

N
Zllied Motion

User writes one or more Program
Organizational Blocks (POBs) in a AML
User Program (Program Organizational Blocks) using IN Control

enable drive;

[loop]

move at: 10 for: 1;
wait 5000 ms;

move at: 10 for: -1;
wait 5000 ms;

goto loop;
/* 000000 */ 0x0600,0x0000, /* STACK */
A translator (part of IN Control) converts to O COREEn) o O e, e D CroR
each POB to an intermediate “opcode” /* 00000A */ 0x0404, /* DREN */
/* @0000C */ /* [LOOP] */
language /* ©0000C */ ©x0100,0x000A,0x0000, /* PUSHCT 10 */
/* 000012 */ 0x0100,0x0001,0x0000, /* PUSHCI 1 */
/* 000018 */ 0x0012,0x0011, /* CALLX */
/* 00001C */ 0x0100,0x1388,0x0000, /* PUSHCI 5000 */
/* 000022 */ 0x0407, /* DELAY */
/* 000024 */ 0x0100,0x000A,0x0000, /* PUSHCI 10 */
/* ©0002A */ 0x0100,0x0001,0x0000, /* PUSHCI 1 */
/* 000030 */ 0x0210, /* NEG */
/* 000032 */ 0x0012,0x0011, /* CALLX */
/* 000036 */ 0x0100,0x1388,0x0000, /* PUSHCI 5000 */
/* 00003C */ 0x0407, /* DELAY */
/* @BOO3E */ 0x0300,0x000C,0x0000, /* BR LOOP */
/* 000044 */ 0x0401, /* END */
/* 000046 */ /* [$$$DATA] */
/* 000046 */ 0x0603,0x004C,0x0000 /* DATA $$$END */
/* 0004C */ /% [$$$END] */
The Virtual Machine (VM) schedules, triggers
and runs one or more POBs.

MULTI-TASKING
VIRTUAL
MACHINE
(vm)

TRAJECTORY

GENERATOR

The VM sends motion commands and data as
needed to the trajectory generator

34-2201 Allied Motion Programmability Standard | Concept

Pdlied Motion

PROGRAM ORGANIZATIONAL BLOCKS

Program Organizational Blocks (POBs) are the components that make up a user program. Typically, more than one
POB is used to construct the user program, although only one is required.

POBs operate and execute independently of each other —in other words, they also can be thought of as tasks in a
multi-tasking environment.

POBs have priority — namely, foreground (FG) and background (BG). FG POBs are scheduled to run with the
position loop and as such should be limited to critical operations (such as starting an indexed move when an input
changes state). There is a limit to the number of active POBs can be run in the foreground before an error occurs.

The run-time virtual machine also detects when the active FG POBs have run for too long (which would create a
problem scheduling the next position loop update). This is a fatal error as well. Computationally expensive
operations, such as trigonometric math, should be computed in a BG POB and passed somehow to the FG POB.

POBs can start, stop and idle (suspend) other POBs, both FG and BG.

POBs can be set to start running when some event occurs — for example, when the state of an input changes. This
event-driven programming is very useful in handling both expected and unexpected events in automated systems.
For example, instead of using the drives pre-programmed over-travel limit inputs, the user can program event
triggers to run when the limit switch is tripped to gracefully stop the motor, annunciate such to the operator and
to restart operation in a logical manner (such as entering a jog mode).

As mentioned earlier, at least one POB is required in a user program. This required POB must be named main.
This POB typically initializes the system, and starts the necessary POBs required for operation of the drive. Main is
started as a BG POB.

There is only one instance of a running POB — if a POB named homeAxis is running and a POB issues a command to
start it (again), the command will be effectively ignored.

In summary:

1. POBs are the components that make up a user program in the drive;

2. POBs are either run with the position loop (FG POBs) or run when no other loops are scheduled (in the
free time as BG POBs);

3. FG POBs are resource limited — a limited number can be active at one time, and excessive CPU use in FG
POBs will cause a fatal error (“FG POB Time Exceeded”);

4. FG can be started, stopped and idled by another POB and can be triggered to start when an event occurs;

5. Atleast one POB is required in the user program — this POB named main initializes the system and starts
the execution of other POBs as required.

34-2201 Allied Motion Programmability Standard | Program Organizational Blocks

Pdlied Motion

MuLTi-Axis PROGRAM ORGANIZATION BLOCKS

In a multi-axis environment, a user program consists of:

1. A supervisory set of POBs destined for the supervisory controller (“axis 0");
a. This set of POBs must contain the main POB that initializes the entire multi-axis system.
2. Zero or more POBs for each axis in the system.

The supervisory controller governs the entire operation of the multi-axis system and as such can:

1. Start, stop or idle pre-stored POBs on a given axis;
2. Send on-the-fly AML code to one or more axes for execution.

The supervisory controller has access to the global variables of each axis as well as its own store of global variables.
An axis can access global variables on the supervisory controller, but not those of other axes.

34-2201 Allied Motion Programmability Standard | Program Organizational Blocks

xilied Motion

VARIABLES

The VM run-time supports global, local and system variables.

All global and local variables are typed at run-time by the VM. In other words, storing an integer into a variable
temporarily makes that variable an integer. If one later stores a floating-point value into the same variables, the
variable is then typed as a floating-point.

Global variables are accessible from all POBs as well as through communication means. Thus, global variables can
be read and written to by using IN Control as well as through fieldbuses such as CANopen and EtherCAT.

Local variables are accessible only within the POB they appear. They are inaccessible from the outside world,
although they can be viewed by using IN Control for debug purposes. Local variables begin with the “_" character
to identify them clearly as locals.

A POB can access parameters and feedback variables (collectively known as system variables) associated with the
drive such as the velocity-loop tuning parameters or the feedback velocity (VEL). No special prefix is used with
these system variables.

1 Arun-time fault occurs if an attempt is made to assign a value to a read-only system variable.

All variables are case-insensitive; therefore “xyz” and “XYZ” refer to the same variable.

ARRAY VARIABLES

The VM run-time supports global array variables of one or two dimensions.

One-dimensional arrays are referred to as vectors and are named starting with VEC followed by a digit. Two-
dimensional arrays are referred to as tables and are named starting with TBL followed by a digit.

Arrays may be read from and written to by means of the vector operator ([index]) or the table operator
([index,index]).

Vectors and tables may be dynamically allocated or re-allocated using AML.

SCHEDULING AND ATOMICITY

Regardless of whether a POB is prioritized as FG or BG, they are executed in a round-robin manner.

FG POBs are executed in a round-robin fashion within the position loop, whereas BG POBs are executed in a round-
robin manner when no other loops are running (“in the idle time”).

When a POB is active (running), a single AML statement is executed before relinquishing to the next active POB to
be run. In other words, if an FG POB contains three assignment statements in a row, only one will execute in this

34-2201 Allied Motion Programmability Standard | Variables

»dlied Motion

position-loop update — the subsequent two statements will execute the next time (the second assignment
statement) and the time following (the third assignment statement).

There are exceptions to this rule, however. Certain AML statements intentionally bypass the round-robin rule.
Those statements that do are highlighted later in this document (in the AML language specification) — they typically
consist of commands related to position capture (registration) or gearing where performance is required.

The user can also specify that the VM run-time temporarily suspend the round-robin rule through use of an atomic
block in AML code. If, instead, the aforementioned three assignment statements where located in an atomic
block, they would be executed in one position-loop update.

1 Care must be taken when using atomic blocks in FG POB code as more CPU resources are utilized and the risk of
an error increases (“FG POB Time Exceeded”).

[Certain AML statements will force a round-robin switch regardless of whether they occur within an atomic
block. This is to prevent a single POB from monopolizing time from other POBs. Those statements that force a
round-robin switch will be defined later in this document.

34-2201 Allied Motion Programmability Standard | Scheduling and Atomicity

xilied Motion

AML

AML is the “C”-like imperative language that POBs are programmed with. POBs contain a series of AML
statements.

Included in the language are the common “C” constructs, such as the structured programming “if statement”, as
well as non-“C” motion and control -oriented statements.

AML SYNTAX

“.n

A semicolon (“;”), the same as in “C”, terminates a statement in AML. Block type statements (such as atomic) do
not use a trailing semicolon to terminate, just as in “C”.

Comments begin with two forward slashes (“//”) and continue to the end of the line as in “C++”. AML also
supports /* to */ commenting as well the same as in “C” and “C++”.

Statements are entered in a free-form manner allowing for arbitrary use of whitespace to format code.

34-2201 Allied Motion Programmability Standard | AML

xilied Motion

AML EXPRESSIONS

Expressions, like in “C”, are fundamental in AML. Expressions consist of numeric constants (such as 0, 1.3 and -
10.5E-6), variables (global/system or local), function calls (such as sin and abs) and operators (such as +, * and <=).

| AML OPERATORS

AML operators have precedence similar to “C”.

Symbol _ Operator _ Operation
(expression) Parenthesis
[index] Vector access Vector subscripting (1-dimensional array)
[index , index] Table access Table subscripting (2-dimensional array)
var@axis Axis variable access Used to interrogate the value of a variable on another axis
object'field Object access Used to interrogate an object
+ Unary plus + X returns X
- Unary minus - X returns the 2s complements of X (negate)
[Logical “not” I X returns “1” if X is 0, “0” otherwise
~ Bit-wise “not” ~ X returns the 1s complement of X (bit inversion)
Bit access X # n returns “1” if the nth bit (0=LSB) in X is set, “0” otherwise
* Multiply
/ Divide
% Modulo X % Y returns the remainder of X divided by Y as an integer
+ Add
- Subtract
<= Less than or equal X <=Y returns “1” if X<=Y, “0” otherwise
< Less than X <Y returns “1” if X<Y, “0” otherwise
Greater than X >Y returns “1” if X>Y, “0” otherwise
>= Greater thanorequal X >=Y returns “1” if X >= Y, “0” otherwise
1= Not equal X =Y returns “1” if X and Y are different in value, “0” otherwise
= Equal X ==Y returns “1” if X and Y are equal in value, “0” otherwise
& Bit-wise “and” X &Y returns the bit-wise “and” of X and Y
| Bit-wise “or” X | Y returns the bit-wise “or” of X and Y
&& Logical “and” X && Y returns “1” if both X or Y are non-zero, “0” otherwise
| Logical “or” X || Y returns “1” if either X or Y are non-zero, “0” otherwise

34-2201 Allied Motion Programmability Standard | AML

xilied Motion

| AML FUNCTIONS

Function Operation

abs(x) ~ Absolute value of x

acos(x) The inverse cosine of x (returned in radians)

asin(x) The inverse sine of x (returned in radians)

atan(x) The inverse tangent of x (returned in radians)

atan2(y,x) The angle (in radians) between the positive x-axis of a plane and the point given
by the coordinate (x,y)

ceil(x) The smallest integer not less than x

cos(x) The cosine of x (where x is in radians)

exp(x) e

fallof(x) Returns 1 if input #x transitions from on to off, 0 otherwise

floor(x) The largest integer no greater than x

log(x) The natural logarithm of x

log10(x) The logarithm of x, base 10

pOW(x,y) X

riseof(x) Returns 1 if input #x transitions from off to on, 0 otherwise

sgn(x) Sign of x (-1 forx <0, 0 for x == 0, 1 for x > 0)

sin(x) The sine of x (where x is radians)

sqrt(x) The square root of x

tan(x) The tangent of x (where x is in radians)

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

BASIC STATEMENTS

Assignment

syntax variable = expression

arguments variable The variable to store the value of expression into
expression A numeric expression to evaluate

example // increment z

z =2+ 1;
// compute the length of the index
index_length = 3.5 + 2*z;

The assignment statement changes the value of a variable.

If / Set
syntax if condition set variable = expression
arguments condition A expression to test; the assignment occurs if the condition evaluates to a
non-zero value
variable The variable to store the value of expression into
expression A numeric expression to evaluate
example // clear x when x >= 10
if x >= 10 set x = 0;

The if/set statement performs an assignment when a specified condition is true. Since this is a common operation,
this statement is essentially a short form of the more complicated if/then statement and makes AML code easier
to read and understand.

If / Then
syntax if condition then { statement; statement; .. statement; }
arguments condition A expression to test
{ .} A bracketed list of statements to execute if the expression evaluates to a
non-zero value
example // if the first input is ON, clear x and y
if INS#1 then {
X = 0;
y =0;
i

The if/then statement performs a series of statements when a specified condition is true. If the condition
evaluates to false (a zero value), then these statements are ignored and not executed.

If/then statements may be nested — in other words, within the bracketed list of statements to execute, another
if/then or if/then/else statement is allowed.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

If / Then/Else
syntax if condition then { statement; .. statement; }1 else { statement; .. statement; }2
arguments condition A expression to test
{ . }1 A bracketed list of statements to execute if the expression evaluates to a
non-zero value
{ . }2 A bracketed list of statements to execute if the expression evaluates to a
zero value
example // if the first input is ON, clear x and y
if INS#1 then {
X = 0;
y = 0;
b
// otherwise, increment z
else {
z =2+ 1;
s

The if/then/else statement performs a series of statements when a specified condition is true and a different series

of statements when the specified condition is false (a zero value).

If/fthen/else statements may be nested — in other words, within the bracketed list of statements to execute,

another if/then or if/then/else statement is allowed.

Reset

syntax reset

example // reset faults
reset;

The reset statement attempts to reset any controller or run-time faults.

It is not an error to reset a non-faulted controller.

Allocation (Vector)

syntax alloc variable [size]

arguments variable A vector variable (VECn)

size An expression that evaluates to a non-negative size

example // allocate VEC1

alloc VEC1[100];

// use VEC1

VEC1[0] = 123.4;

VEC1[1] = VEC1[@] + 456.7;
/] ...

// de-allocate it

alloc VEC1[0O];

The alloc (vector) statement allocates (or reallocates or de-allocates) storage for a vector variable.
Any data contained in the vector variable prior to executing the alloc statement is lost.

[1 An alloc instruction may only be executed in a background POB.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Allocation (Table)

syntax alloc variable [rows,cols]
arguments variable A table variable (TBLn)
rows An expression that evaluates to a non-negative number of rows
cols An expression that evaluates to a non-negative number of columns
example // allocate TBL2

alloc TBL2[10,2];

// use TBL2

TBL2[0,0] = 123.4;

TBL2[0,1] = TBL2[0,0] + 456.7;
/] ...

// de-allocate it

alloc TBL2[9,0];

The alloc (table) statement allocates (or de-allocates) storage for a table variable.

Any data contained in the table variable prior to executing the alloc statement is lost.

1 An alloc instruction may only be executed in a background POB.

Link (Variable)

syntax

link dest = varl * conl + var2 * con2 + offset

link dest = varl * conl + var2 * con2 - offset

link dest = varl * conil

link dest (lower,upper) = varl * conl + var2 * con2 + offset
link dest (lLower,upper) = varl * conl + var2 * con2 - offset
link dest (lLower,upper) = varl * conl

arguments Lower An optional lower limit (constant)
upper An optional upper limit (constant)
dest A (writeable) destination system variable to link
varl A variable
conl A constant
var2 An optional variable
con2 An optional constant
offset An optional constant
example // Have ADC1 act as a “feed-rate override”

link VRATE (0,2) = ADC1 * 0.2;

The link statement is essentially an assignment statement that is executed repeatedly.

In the example above, the link statement relates the VRATE system variable with the value of the first analog input.
When the first analog input changes, VRATE is recalculated and updated.

Unlink (Variable)

syntax unlink dest
arguments dest | A destination system variable to unlink (or “all”)
example // Have ADC1 act as a “feed-rate override”

link VRATE (0,2) = ADC1 * 0.2;

M ooo

// No longer relate VRATE to ADC1
unlink VRATE;

The unlink statement undoes a link operation. A dest of “all” unlinks all active links.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Capture (Variable)

syntax

capture (capturelist) mode

capture every:
capture depth:
capture every:

capture abort

n (capturelist) mode
d position: p (capturelist) mode

n depth: d position: p (capturelist) mode

arguments capturelist A comma-delimited list of up to 4 capture-capable variables
mode auto capture immediately
utrig capture based upon trigger next statement
when var >= value capture when var >= a constant value
when var <= value capture when var <= a constant value
when var outside (min,max) capture when var is outside 2 limits
when var within (min,max) capture when var is within 2 limits
n How often to capture; a value of 1 means every 250us, a value of 2 means
every 500us, etc.
d How many times to capture the capturelist (1 to 10000)
p The ‘trigger’ position:
a value of @ to indicate all data should be ‘pre-trigger’
a value of ‘d’ to indicate all data should be ‘post-trigger’
a value > @, but less than ‘d’ to mix ‘pre’ and ‘post’ -trigger
example // Set up capture on a fault condition for this axis

// --- capture target/feedback position information leading up to a fault
capture depth: 10000 position: © (TPOS, FPOS) when FAULTED >= ©;

/...
/...

// Capture axis 3 ADC1 when triggered by a trigger next
capture (ADC1@3) utrig;

The capture statement in the first four forms sets up a POB-based (“offline”) data capture operation. The last form

(“capture abort”) disables POB-based capture.

POB-based data capture stores the requisite information to the on-board file system for later retrieval by IN
Control or through the ALLNET framework.

Up to 4 variables can be captured at the same time. Any subsequent (non-abort) capture replaces the existing

capture operation.

If a POB-based capture (through this statement) is active, no IN Control —based capture is allowed.

34-2201 Allied Motion Programmability Standard | AML

Pdlied Motion

PROGRAM FLOW STATEMENTS

Label

syntax [name]

arguments name | The name of the label (used as a destination for goto)
example // define a label so we can go to it

[loop]

X =X+ 1;

if x < 10 goto loop;
if y > 100 goto next;

Enext]

A label in AML is a marker for the destination of a goto.

Label names are case-insensitive and are local to the POB where they are used.

Label names must be unique within the POB where they are used. Labels are not allowed in atomic blocks since

goto-type instructions are not allowed within such.

Goto
syntax goto name
arguments name | The name of the destination label
example // define a label so we can go to it
[1oop]
goto loop;

The goto statement transfers program flow to a label within the POB.

[The goto statement causes a round-robin POB switch regardless of where it appears. The goto statement is not

allowed in an atomic block.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

If / Goto
syntax if condition goto Llabel
arguments condition A expression to test; the branch to label occurs if the condition evaluates
to a non-zero value
Label The destination to go to when the condition evaluates to true (a non-zero
value)
example // define a label so we can go to it
[loop]

X =X+ 1;
if x < 10 goto loop;

// test if the first input is ON
if INS#1 goto first_input_is_on;

The if/goto statement transfers program flow to a label within the POB when the specified condition evaluates to a
non-zero value.

['] Execution of the goto part of this statement (in other words, when the condition is true) causes a round-robin
POB switch. The if/goto statement is not allowed in an atomic block.

Wait

syntax wait time ms
wait forever

arguments time

An expression that will be evaluated and used as the number of milliseconds
to wait (a value of @ = forever)

example // wait for 100 milliseconds

wait 100 ms;

The wait statement delays for a specified number of milliseconds or forever. The use of wait/forever is useful in
conjunction with asynchronous event handlers.

1 Suspending a POB executing a wait instruction effectively suspends the wait timer as well. In other words, if the

POB was executing a wait of 100 ms duration and the POB was suspended after 75 ms, then the wait will continue
for 25 ms after the POB is un-suspended.

[l A wait statement cannot appear within an atomic block.

Wait/Until

syntax wait until condition

arguments condition | An expression to test

example // wait until the first and second inputs are ON
wait until INS#1 &8& INS#2;

The wait/until statements stops program flow until the specified condition evaluates to true.

[Suspending a POB executing a wait/until instruction effectively suspends evaluation of the condition during the
suspension.

[l A wait/until statement cannot appear within an atomic block.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Wait/Until/After

syntax wait until condition after time ms goto Llabel;
arguments condition An expression to test
time An expression to evaluate as a timeout value
Label The Llabel to branch to if the condition fails to evaluate to true after time
milliseconds
example // wait until the first and second inputs are ON

// give up after 100 milliseconds
wait until INS#1 && INS#2 after 100 ms goto not_on;

The wait/until/after statements stops program flow until the specified condition evaluates to true or after a
specified period of time. If the condition is not met within the time limit, program execution continues at the

specified label.

[Suspending a POB executing a wait/until instruction effectively suspends evaluation of the condition during the
suspension as well as suspending the timeout timer.

[l A wait/until/after statements cannot appear within an atomic block.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

POB CONTROL STATEMENTS

Start/Restart POB

syntax start name FG

start name BG

restart name FG

restart name BG

arguments name The name of the POB to start (or restart)
example // home the axis, wait until POB has ended
start HOME FG;

wait until HOME’notRunning;

// restart the UTIL POB

restart UTIL FG;

The start statement starts execution of the named POB as either a foreground (FG) or background (BG) POB. If the
POB is currently running or suspended, the start will be effectively ignored.

The restart statement first stops the named POB (if running) and then starts it as either a foreground (FG) or
background (BG) POB.

Stop POB
syntax stop name
stop all
arguments name | The name of the POB to stop
example // abort homing the axis
stop HOME;
// stop all POBs (excluding this one)
stop all;

The stop statement stops execution of the named POB or all POBs (excluding the POB executing the stop/all).

If the named POB is not running, the stop statement will be effectively ignored — suspended POBs are stopped,
however.

Executing a stop all in a multi-axis environment stops all POBs running on all axes.

Suspend POB

syntax suspend name
arguments name | The name of the POB to suspend
example // suspend the POB named UTIL

suspend UTIL;

The suspend statement temporarily suspends a POB. If the POB is not currently running or suspended, no error
occurs and the statement is effectively ignored.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Unsuspend POB

syntax unsuspend name
arguments name | The name of the POB to unsuspend
example // unsuspend the POB named UTIL

suspend UTIL;

The unsuspend statement reactivates a suspended POB. If the POB is not suspended, no error occurs and the
statement is effectively ignored.

End (POB)

syntax end

example // end this POB after suspending UTIL
suspend UTIL;
end;

The end statement stops the execution of the POB executing the statement.

An implicit end statement is added to the end of any POB prior to translation from AML to opcode form.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

10 CONTROL STATEMENTS
Set Output
syntax set output state (list) .. state (list)
arguments state ON/on or OFF/off
List A parenthesized, comma-delimited list of outputs
example // activate outputs 2 and 3 and deactivate output 4

set output on (2, 3) off (4);
// deactivate output 1
set output off (1);

The set output statement activates or deactivates a list of outputs.

Pulse Output

syntax pulse output n for time ms
arguments n The output to pulse
time An expression that evaluates to the number of milliseconds to pulse the
output
example // pulse output 3 for 50 milliseconds

pulse output 3 for 50 ms;
// pulse output 2 for xpulse milliseconds
pulse output 2 for xpulse ms;

The pulse output statement pulses an output on for a specified duration.

If the output is on when the statement executes, the output state will initially be kept on, but will turn off after the
specified duration has elapsed.

If a set output statement changes the state to off before the duration elapses, the generation of the pulse is
effectively aborted.

Define PLS
syntax define pls n using refvar defs
arguments n The output to define or replace the definition of
defs A comma-delimited list of definitions of the form:
on constl to const2
example // define a PLS for output 1

// the output will be active (on) when FPOSC is between @ to 400 or between 900 and 4000
// the output will be inactive (off) when FPOSC is outside those bounds
define pls 1 using FPOSC on © to 400, on 900 to 4000;

The define pls statement defines (or redefines) a software-based, programmable limit switch (PLS).

If a PLS definition is in place for a given output, the definition is replaced by the new definition.

When a define pls statement is encountered, the PLS is disabled and will not be used to compute the state of the
output. An enable pls statement is required to activate the PLS.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Enable/Disable PLS
syntax enable pls n
disable pls n
arguments n | The output to enable/disable the PLS for
example // enable the PLS defined for output 1
enable pls 1;
// disable the PLS defined for output 2
disable pls 2;

The enable pls activates the defined PLS for the specified output.

Wait For Rise/Fall

syntax wait for rise of n
wait for fall of n
arguments n | The input to wait for
example // wait until input 1 transitions from off to on

wait for rise of 1;
// wait until input 2 transitions from on to off
wait for fall of 2;

The wait for rise/fall statement waits for a transition of a digital input.

[l A wait rise/fall statement cannot appear within an atomic block.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

BLOCK STATEMENTS
Atomic
syntax atomic { statement; .. statement; }
example // save away the previous value of x, and clear x
atomic {
x_old = x;
X = 0;
s

The use of an atomic block temporarily suspends the round-robin execution of POBs guaranteeing that the
statements within the atomic block are executed without any other statements (contained in either foreground or
background POBs) begin executed.

Use of the atomic statement in a FG POB causes the following to occur:

1.

The FG POB executing the atomic statement is temporarily stopped. Since FG POBs are effectively
interrupt driven (as they are run in the position-loop task), there may be BG POBs that are in process of
being executed and they must be stopped first.

A flag is set in the VM that manages the BG POBs informing that the BG POBs should be temporarily
stopped after they have finished executing their respective current statements.

The VM managing the BG POBs will set another flag informing the FG POB manager that all BG POBs have
been temporarily stopped.

The FG POB that was temporarily stopped due to execution of the atomic statement executes the
statements contained within the atomic block to completion.
The FG POB manager clears all flags allowing the BG (and other FG) POBs to run again.

Use of the atomic statement in a BG POB causes the following to occur:

A flag is set informing the FG POB manager not to execute any FG POBs.
A flag is set informing the BG POB manager to only run this POB.

When all POB statements within the atomic block have completed execution, all flags are cleared
resuming normal operation.

[1 The atomic statement cannot be nested.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Within (timeout)

syntax within time ms { statement; .. statement; } else goto Label

arguments time An expression that evaluates to the timeout (in milliseconds)
Label The label to go to if a timeout occurs

example // wait for the registration mark on input 1 to be “seen”

// if not “seen” within 200 milliseconds, go to nomark
within 200 ms {

wait for rise of 1;

wait for fall of 1;
} else goto nomark;

The within statement executes a series of statements with a timeout check.

If the execution of the statements does not finish within the specified time, program flow is redirected to the
specified label.

[Within statements cannot be nested and may not contain goto, call, wait/until/after or label statements or an
atomic block.

1 Within statements may not appear within an atomic block.

Within (timeout)

syntax within time ms { statement; .. statement; } else { statement; .. statement; }

arguments time An expression that evaluates to the timeout (in milliseconds)
Label The label to go to if a timeout occurs

example // wait for the registration mark on input 1 to be “seen”

// if not “seen” within 200 milliseconds, set failed to 1
within 200 ms {

wait for rise of 1;

wait for fall of 1;
} else { failed = 1; }

The within statement executes a series of statements with a timeout check.

If the execution of the statements does not finish within the specified time, program flow is redirected to the else
block.

[| Within statements cannot be nested and may not contain goto, call, wait/until/after or label statements or an
atomic block.

[l Within statements may not appear within an atomic block.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Repeat

syntax repeat count { statement; .. statement; }

arguments count An expression that evaluates to the number of times to execute the
statements in the block

example // wait for 5 transitions of input 1

repeat 5 {

}

wait for rise of 1;
wait for fall of 1;

The repeat statement executes a series of statements a certain number of times.

If the count evaluates to a negative number or zero, no statements are executed.

Repeat statements may not appear in an atomic block, but may be nested.

Repeat

syntax repeat until condition { statement; .. statement; }

arguments condition An expression that when it evaluates to a non-zero value, the loop ends
execution

example // repeat until input 1 is on

repeat until IN#1 {

}

/...

The repeat until statement executes a series of statements until a condition evaluates to a non-zero value. The
condition is evaluated after the statements execute.

The statements within the block are at least executed one time.

Repeat until may not appear in an atomic block, but may be nested.

While

syntax while condition { statement; .. statement; };

arguments condition An expression that when it evaluates to a zero value, the loop does not
execute

example // execute while

while IN#1 {

}

wait for rise of 1;
wait for fall of 1;

The while statement executes a series of statements while a condition evaluates to a non-zero value.

The statements within the block do not get executed if the condition evaluates initially to a zero value. The
condition is reevaluated after all statements execute.

While statements may not appear in an atomic block, but may be nested.

34-2201 Allied Motion Programmability Standard | AML

Pdlied Motion

On (Axes)
syntax on (axes) { statement; .. statement; }
arguments axes | A space-delimited list of numeric axes to execute AML statements on
example // enable axis 1, 2 and 4
// then, start the POB named “findHome” on those axes
on (12 4) {

enable drive;
start findHome FG;

}

The on (axes) statement executes a series of statements on one or more axes in a multi-axis environment.
[This statement may only be used on the supervisory controller.

[Statements are executed in background (BG).

On Axes
syntax on axes { axis nl: statement; .. statement; axis n2: statement; .. statement; .. }
arguments axes | A space-delimited list of numeric axes to execute AML statements on
example // enable axis 1 and start the POB named “index” on axis 2
on axes {
axis 1:
enable drive;
axis 2:

start index FG;

}

The on statement executes a series of differing statements on one or more axes in a multi-axis environment.
1 This statement may only be used on the supervisory controller.

[Statements are executed in background (BG).

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

EVENT STATEMENTS
On Fault
syntax on fault handler
arguments handler A handler of one the following forms:
start name
ignore
where name is the name of a POB
example // if a fault occurs, start the fault handler named drive_faulted
on fault start drive_faulted;
// don’t do anything if a fault occurs
on fault ignore;

The on fault statement defines what should occur when a drive fault or run-time programming fault occurs.

When the handler is specified to start a POB, the POB named name will be started as a BG task when a drive fault
occurs.

7 When a fault occurs, all other running POBs are first stopped and only then is the new BG task started.

When the handler is specified as ignore (the default at power-up), no fault handling POB is started when a fault
occurs.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

MOTION STATEMENTS

Before defining the available motion related statements in AML, an understanding of the target-generator
operating states is in order.

TARGET GENERATOR OPERATING STATES
A diagram of the operating states and transitions between them appears on the following page.
Stopped

The stopped state is the initial state of the target-generator. When in this state, the target-generator is not
generating new target positions for the position loop to follow, but the position loop is active.

Positioning

The positioning state is when the target-generator is calculating a series of target positions based on time, such as
during a simple incremental move. This is a temporary state — when the generation is complete, the target-
generator enters the stopped state.

Following

The following state is when the target-generator is calculating a series of target positions based on a master
position, such as occurs during gearing or master/slave operation. This master position should not be confused
with the master controller (supervisor) in the first slot of an MX controller.

CAM

The CAM state is when the target-generator is calculating a series of target positions using an interpolation table of
consisting of (position, position) points.

Position-Based Velocity

The position-based velocity (PBV) state is when the target-generator is integrating a command velocity producing a
target position. This state is commonly used when there is no real end-position, such as during a jogging operation
or when moving to a hard stop.

34-2201 Allied Motion Programmability Standard | AML

Pdlied Motion

Execution of any
time-based Completion of any time-based

motion statement motion statement

or execution of a
motion stop

statement

Execution of a
follow enter
statement

Execution of a
follow exit
statement

STOPPED

Execution of

cam start Execution of a POSITION-
statement pbv enter 1q BASED
statement VELOCITY

Completion of a CAM table Execution of a
or execution of a pbv exit

cam stop statement
statement

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

| UTILITY MOTION STATEMENTS

Enable (Drive)

syntax enable drive

example // Enable the drive
enable drive;

The enable drive statement enables the drive and prepares the target-generator for motion generation.

Disable (Drive)

syntax disable drive;
example // Disable the drive
disable drive;

The disable drive statement disables the power section of the drive. If motion is in progress upon executing the
disable, the motion will be abruptly terminated.

Motion Stop
syntax motion stop
motion stop rate: rate
arguments rate | An expression that is evaluated as the deceleration rate
example // Stop motion abruptly
motion stop;
// Stop motion, but slew to zero speed
motion stop rate: 100;

The motion stop statement terminates any active target generation and enters the stopped state.
In the first form of the statement, the target-generator simply stops generating a new target position.
In the second form of the statement, the target-generator slews the speed to zero at the specified rate.

In this form of the statement, since the target position is not immediately stopped, the resulting ending target
position may be well beyond where it was before the slew to zero speed started.

Trigger Next
syntax trigger next
example // set trigger

trigger next;

// €UTRIG’ trigger will occur here
move trap to: 3.75 rate: 1000;

The trigger next statement arms a UTRIG data-capture trigger that will occur on and at the start of the next motion
statement.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Set Target
syntax set target position: position
set target counts: counts
arguments position An expression that is evaluated as the new value for the absolute target
position in user-units (“uu”)
counts An expression that is evaluated as the new value for the absolute target
position (feedback counts)
example // Zero the target position

// For example:

set target position: 0;

// For example:

set target counts: 100;

// TPOS=1.000 and FP0S=1.001 before
// TP0S=0.000 and FP0S=0.001 after

// Set the target position counter to 1000 counts

// TPOSC=9000 and FP0SC=9002 before
// TPOSC= 100 and FPOSC= 102 after

The set target statement changes the value of the absolute target position counter, while maintaining any existing

following error.

One such application of this statement is to declare where “zero position” is after the execution of a homing

procedure is complete.

Following error is intentionally maintained, as that is what is usually desired.

Offset Target
syntax offset target position: position
offset target counts: counts
arguments position An expression that is evaluated as the value to add to the absolute target
position in user-units (“uu”)
counts An expression that is evaluated as the value to add to the absolute target
position (feedback counts)
example // Bump the target position by 1.000

// For example:

offset target position: 1.0;

// TP0OS=1.000 and FP0S=1.001 before
// TP0S=2.000 and FP0S=2.001 after

The offset target statement adds (offsets) the value of the absolute target position counter, while maintaining any

existing following error.

Following error is intentionally maintained, as that is what is usually desired.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Zero Following Error

syntax

zero following error

example

// Zero the following error and call this position zero
zero following error;
set target position: 9;

The zero following error statement removes any following error in the position loop by copying the target position

counter into the feedback position counter.

For example, the zero following error statement is useful to reduce or eliminate built up torque after homing on a
hard stop.

Zero Target (Position)

syntax

zero target

example

// The two following statements are the equivalent.
zero target;
set target position: 9;

The zero target position statement is a short form of set target position with an argument of zero.

Couple Master

syntax couple master source

arguments source The source for the master position:
virtual an internally generated source
hw n from a slave hardware source #n
axist n from another axis’ target position (multi-axis)
axisf n from another axis’ feedback position (multi-axis)
superv n the supervisory controller’s hardware source #n
vsuperv the supervisory controller’s virtual
none no source

example // Couple the master to the “virtual encoder”

couple master virtual;

// “Move” the “virtual encoder” at 100 counts/sec for 100000 counts
// ...rate limit the generated feedback to 5000 counts/sec/sec

move virtual at: 100 for: 100000 rate: 5000;

// Wait until “virtual encoder” movement is complete

wait virtual;

// Couple back to hardware

couple master hw 1;

The couple master changes the source of where the master position feedback is derived from.

The source can be virtual, which is an internally generated source (and controlled by means of move virtual

statements), physical hardware (hw). In some following applications, it is desired to be able to decouple the slave

axis while still actively operating in following mode — the couple master none allows such as it can be used to

decouple the slaved axis from the (master) source, perform some operation, and then couple it back.

In a multi-axis environment the source may be the supervisor’s encoder position or virtual position (superv or
vsuperv) or another axis’ target (axist) or feedback (axisf) position.

34-2201 Allied Motion Programmability Standard | AML m

»dlied Motion

Wait (For In Position)

syntax wait for in position;

example // Zero the following error and call this position zero
zero following error;

set target position: 0;

The wait for in position statement waits until the target generator is finished generating new target positions and
that the feedback position is within a window of that ending target position.

Program flow continues onward after issuing a motion statement —the POB is free to perform other operations
(with the exception of issuing a conflicting motion statement) before waiting and checking for the completion of
the intended motion.

This statement is applicable only when the axis is operating in the positioning state (time-oriented motion).

1 The wait for in position statement cannot appear within an atomic block.

Move Virtual

syntax move virtual at: freqg for: counts rate: rate
move virtual at: freq rate: rate
move virtual stop

arguments freq An expression that is evaluated as the frequency to generate counts (/sec)
counts An expression that is evaluated as the total number of counts to generate
rate An optional expression that is evaluated as an maximum rate of change for

the frequency count generation: a value of © (implied when no rate is given)
means instantaneous change of frequency

example // Generate 100000 pulses at 100 counts/sec on the virtual encoder

move virtual at: 100 for: 100000;

wait virtual;

// Generate 100000 pulses at 500 counts/sec with a rate of change of 10000 counts/sec/sec
move virtual at: 500 for: 100000 rate: 10000;

wait virtual,;

The first two forms of the move virtual statement begins the generation of virtual encoder pulses and are used in
conjunction with the couple master virtual statement. The first form limits the number of generated pulses to a
specified number of counts.

[An error is generated if this form of the move virtual statement is issued and a move virtual is in progress.

The second form of the move virtual statement alters the frequency (and possibly the rate of change to seek this
new frequency) at which the pulses are generated.

The third form of the move virtual statement immediately stops the generation of pulses.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Wait (Virtual)

syntax

wait virtual;

example

// start virtual master pulse generation
move virtual at: 500 for: 100000 rate: 10000;
// wait until pulse generation is complete
wait virtual;

The wait virtual statement waits until the virtual pulse generator is finished generating new counts.

(Enter) Position Seek Mode

syntax

seek on;

example

// Zero the following error and call this position zero
zero following error;
set target position: 0;

RO = 5; // absolute position

R1 = 10; // maximum acceleration/deceleration

R2 = 1000; // maximum velocity

// Start position seek (and therefore head to absolute position 5.0)
seek on;

The seek on statement changes the mode of the target generator where is constantly seeks the absolute position
specified in the register RO.

While attempting to seek this position, the target generator will limit its generated velocity to the unsigned value
contained in the R2 register. Also, the unsigned value contained in the R1 register is used to limit the
acceleration/deceleration rate.

(Exit) Position Seek Mode

syntax seek off;

example // Stop seeking the position in RO
seek off;

The seek off statement changes to mode of the target generator from seeking to the stopped state.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

| SIMPLE MOTION STATEMENTS (ABSOLUTE)

Move To
syntax move to: abspos
move to: abspos rate: rate
move to: abspos acc: arate dec: drate
arguments abspos An expression that is evaluated as the absolute end position
rate An expression that is evaluated as an unsigned acceleration/deceleration
rate
arate An expression that is evaluated as an unsigned acceleration rate
drate An expression that is evaluated as an unsigned deceleration rate
example // Move using the default acc/dec rates (no S-curve generation)
move to: 1.5+x;
// Another move
move to: 3.75 rate: 100;

The move to statement generates a triangular move to an absolute position (abspos) consisting of two segments
namely an acceleration segment and a deceleration segment.

If no rates are specified (first form of the statement), then the default acceleration and deceleration rates are
used.

Move At To
syntax move at: maxvel to: abspos
move at: maxvel to: abspos rate: rate
move at: maxvel to: abspos acc: arate dec: drate
arguments maxvel An expression that is evaluated as a maximum velocity limit
abspos An expression that is evaluated as the absolute end position
rate An expression that is evaluated as an unsigned acceleration/deceleration
rate
arate An expression that is evaluated as an unsigned acceleration rate
drate An expression that is evaluated as an unsigned deceleration rate
example // Move using the default acc/dec rates (no S-curve generation)
move at: 10 to: 1.577;
// Another move
move at: maxspeed to: 3.75 rate: 100;

The move at to statement generates a trapezoidal move to an absolute position (abspos) consisting of three
segments namely an acceleration segment, a constant velocity segment and a deceleration segment. If the
specified maximum velocity limit is unattainable with the specified arguments, then a triangular move is
generated.

If no rates are specified (first form of the statement), then the default acceleration and deceleration rates are
used.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Move Trap To

syntax

move trap to:
move trap to:
move trap to:

abspos
abspos rate: rate
abspos acc: arate dec: drate

arguments abspos An expression that is evaluated as the absolute end position
rate An expression that is evaluated as an unsigned acceleration/deceleration
rate
arate An expression that is evaluated as an unsigned acceleration rate
drate An expression that is evaluated as an unsigned deceleration rate
example // Move using the default acc/dec rates

move trap to:
// Non-default acc/dec
move trap to:

endpos;

3.75 rate: 1000;

The move trap to statement generates a trapezoidal move to an absolute position (abspos) consisting of three

segments namely an acceleration segment, a constant velocity segment and a deceleration segment. The second

form generates trapezoidal segments such that each of the segments is of equal time: of % the time will be spent
accelerating, 7 of the time will be spent at a constant velocity, and % of the time will be spent decelerating.

Move In To

syntax

move in: time to: abspos

arguments time An expression that is evaluated as a time, specified in seconds
abspos An expression that is evaluated as the absolute end position
example // Move in 100 milliseconds to 1.5

move in: ©0.100 to: 1.5;

The move in to statement generates a trapezoidal move to an absolute position (abspos) consisting of three

segments namely an acceleration segment, a constant velocity segment and a deceleration segment. The

calculated acceleration, deceleration and maximum velocity are governed by the time argument that dictates the

total time the move should take.

34-2201 Allied Motion Programmability Standard | AML m

Pdlied Motion

Move Alter To
syntax move alter to: abspos rate: rate
arguments abspos An expression that is evaluated as the new absolute end position
rate An expression that is evaluated as the rate to use for both acceleration and
deceleration
example // Move to 1.5 in 2.5 seconds

move in: 2.5 to: 1.5;

wait 500 ms;

// Changed my mind - head instead to 2.0
move alter to: 2.0 rate: 1000;

The move alter to statement changes the end position on-the-fly for an active time-based move command (either
absolute or incremental).

This statement specifies a new absolute end position with a specified acceleration and deceleration rate.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

| SIMPLE MOTION STATEMENTS (INCREMENTAL)

Move For
syntax move for: incpos
move for: incpos rate: rate
move for: incpos acc: arate dec: drate
arguments incpos An expression that is evaluated as the incremental position
rate An expression that is evaluated as an unsigned acceleration/deceleration
rate
arate An expression that is evaluated as an unsigned acceleration rate
drate An expression that is evaluated as an unsigned deceleration rate
example // Move 1 using the default acc/dec rates (no S-curve generation)
move for: 1.0;
// Another move
move for: -4 rate: 100;

The move to statement generates a triangular move for a specified position displacement (incpos) consisting of
two segments namely an acceleration segment and a deceleration segment.

If no rates are specified (first form of the statement), then the default acceleration and deceleration rates are
used.

Move At For

syntax move at: maxvel for: incpos

move at: maxvel for: incpos rate: rate

move at: maxvel for: incpos acc: arate dec: drate

arguments maxvel An expression that is evaluated as a maximum velocity limit
incpos An expression that is evaluated as the incremental position
rate An expression that is evaluated as an unsigned acceleration/deceleration
rate
arate An expression that is evaluated as an unsigned acceleration rate
drate An expression that is evaluated as an unsigned deceleration rate
example // Move using the default acc/dec rates (no S-curve generation)

move at: 10 for: 1.5;
// Another move
move at: maxspeed for: 3 rate: 100;

The move at for statement generates a trapezoidal move for a specified position displacement (incpos) consisting
of three segments namely an acceleration segment, a constant velocity segment and a deceleration segment. If
the specified maximum velocity limit is unattainable with the specified arguments, then a triangular move is
generated.

If no rates are specified (first form of the statement), then the default acceleration and deceleration rates are
used.

34-2201 Allied Motion Programmability Standard | AML m

»dlied Motion

Move Trap For

syntax move trap for: incpos
move trap for: incpos rate: rate
move trap for: incpos acc: arate dec: drate

arguments incpos An expression that is evaluated as the incremental position
rate An expression that is evaluated as an unsigned acceleration/deceleration
rate
arate An expression that is evaluated as an unsigned acceleration rate
drate An expression that is evaluated as an unsigned deceleration rate
example // Move using the default acc/dec rates

move trap for: delta;
// Non-default acc/dec
move trap for: 3.5 rate: 500;

The move trap to statement generates a trapezoidal move for a specified position displacement (incpos) consisting
of three segments namely an acceleration segment, a constant velocity segment and a deceleration segment. The
second form generates trapezoidal segments such that each of the segments is of equal time: of % the time will be
spent accelerating, % of the time will be spent at a constant velocity, and % of the time will be spent decelerating.

Move In To
syntax move in: time for: abspos
arguments time An expression that is evaluated as a time, specified in seconds
incpos An expression that is evaluated as the incremental position
example // Move in 100 milliseconds 1.5 uu
move in: ©0.100 for: 1.5;

The move in to statement generates a trapezoidal move for a specified position displacement (incpos) consisting of
three segments namely an acceleration segment, a constant velocity segment and a deceleration segment. The
calculated acceleration, deceleration and maximum velocity are governed by the time argument that dictates the
total time the move should take.

34-2201 Allied Motion Programmability Standard | AML

Pdlied Motion

Move Alter For

syntax move alter for: incpos rate: rate
arguments incpos

An expression that is evaluated as an incremental position relative to the
current position

rate An expression that is evaluated as the rate to use for both acceleration and
deceleration
example // Move to 1.5 in 2.5 seconds

move in: 2.5 to: 1.5;

wait 500 ms;

// Changed my mind - stop here quickly
move alter for: @ rate: 20000;

The move alter for statement changes the end position on-the-fly for an active time-based move command (either
absolute or incremental).

This statement specifies a relative (to the current position) end position with a specified acceleration and
deceleration rate.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

| PosITION-BASED VELOCITY MOTION STATEMENTS

PBV Enter/Exit

syntax pbv enter

pbv exit

example // Enter PBV state
pbv enter;

/] ...

// exit PBV state
pbv exit;

The pbv enter statement causes the target generator to enter the position-based velocity (PBV) state (from the
stopped state).

[1 An error is generated if a pbv enter statement is issued when not in the stopped state.

The pbv exit statement causes the target generator to exit the position-based velocity (PBV) state and enter the
stopped state. An error is not generated if the target generator is not in the PBV state.

PBV At
syntax pbv at: vel
pbv at: vel rate: rate
arguments vel An expression that is evaluated as the (new) velocity for use in the
position-based velocity state
rate An expression that is evaluated as an unsigned acceleration/deceleration
rate
example pbv enter;

// Input #1 is jog input - wait for rise
wait for rise of 1;

// Start jogging at 1 uu/sec

pbv at: 1.0 rate: 1000;

wait for fall of 1;

// Stop jogging

pbv at: @ rate: 2000;

pbv exit;

The pbv at statement causes the target generator to change the PBV velocity.
The first form of the statement instantaneously changes the PBV velocity (no regard to rate limiting).
The second form of the statement rate limits the change in the PBV velocity.

In the PBV state, target positions are generated based upon the current PBV velocity without regard to an end
position. The PBV state is useful for jogging an axis, or during homing procedures where the end position is
unknown or undefined.

The current PBV velocity can be altered any number of times by issuing additional pbv at statement.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

PBV Stop

syntax pbv stop within: displacement

arguments displacement An expression that is evaluated as an unsigned position displacement to stop
within

example // Start moving at 2 uu/sec

pbv at: 2.0 rate: 1000;
wait for fall of 2;
// Stop 1 uu after
pbv stop within: 1;

The pbv stop within statement causes the target generator to command a zero velocity (starting from the current
PBV velocity) at such a deceleration rate that the specified position displacement is consumed before stopping.

The target generator will automatically sign the displacement appropriately based upon the sign of the current PBV

velocity.

If the current PBV velocity is zero, the statement will be effectively ignored.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

| ComPLEX MOTION STATEMENTS

Complex motion statements specify one or more jerk parameters for S-curve generation.

CMove At To
syntax cmove at: maxvel to: abspos rate: rate jerk: jerk
cmove at: maxvel to: abspos acc: arate dec: drate jacc: jacc jdec: jdec
arguments maxvel An expression that is evaluated as an unsigned velocity limit
abspos An expression that is evaluated as the absolute end position
rate An expression evaluated as an unsigned acceleration/deceleration rate
jerk An expression that is evaluated as an unsigned jerk limit
arate An expression that is evaluated as an unsigned acceleration rate
drate An expression that is evaluated as an unsigned deceleration rate
Jjacc An expression that is evaluated as an unsigned jerk limit used during
acceleration
Jjdec An expression that is evaluated as an unsigned jerk limit used during
deceleration
example // Move symmetrical
cmove at: 10 to: x rate: 1000 jerk: 500;
// Move unsymmetrical
cmove at: 15 to: x acc: 1000 dec: 700 jacc: 1500 jdec: 400;

The cmove at to statement generates a complex move to an absolute position (abspos) consisting of up to 7
segments.

The first form of the statement generates a symmetric move, whereas the second form generates an
unsymmetrical move.

CMove At For
syntax cmove at: maxvel for: incpos rate: rate jerk: jerk
cmove at: maxvel for: incpos acc: arate dec: drate jacc: jacc jdec: jdec
arguments maxvel An expression that is evaluated as an unsigned velocity limit
incpos An expression that is evaluated as the displacement
rate An expression evaluated as an unsigned acceleration/deceleration rate
jerk An expression that is evaluated as an unsigned jerk limit
arate An expression that is evaluated as an unsigned acceleration rate
drate An expression that is evaluated as an unsigned deceleration rate
Jjacc An expression that is evaluated as an unsigned jerk limit used during
acceleration
Jjdec An expression that is evaluated as an unsigned jerk limit used during
deceleration
example // Move symmetrical
cmove at: 1@ for: x rate: 1000 jerk: 500;
// Move unsymmetrical
cmove at: 15 for: x acc: 1000 dec: 700 jacc: 1500 jdec: 400;

The cmove at for statement generates an incremental (relative) complex move consisting of up to 7 segments.

The first form of the statement generates a symmetric move, whereas the second form generates an
unsymmetrical move.

34-2201 Allied Motion Programmability Standard | AML

Pdlied Motion

| TABLE-BASED IMIOTION STATEMENTS
Motion tables are another way to define a trajectory. AML supports a number of types of motion tables.

All tables are composed as relative to a starting entry of (0.0, 0.0). Therefore, when executed, the table is relative
to the current position of the axis.

Spline

The Spline algorithm generates a smooth cubic-spline (3’d-order polynomial) fitted profile from a table consisting of
a series of (time, position) or (position, position) points. The profile is generated in such a way both the velocity
and acceleration is continuous at and between points.

The algorithm guarantees that the generated curve passes through each of the specified points.
Linear

The Linear algorithm does a linear fit of position from a table consisting of a series of (time, position) or (position,
position) points.

The algorithm guarantees that the generated curve passes through each of the specified points.
B-Spline

The B-Spline algorithm generates a smooth B-spline (a generalized Bézier curve) profile from a table consisting of a
series of (time, position) or (position, position) points. The profile is generated in such a way both the velocity and
acceleration is continuous.

The algorithm does not guarantee that the generated position passes through each of the specified points —
however, the final generated position will be equal to the last specified position.

LI For all point-pairs in the table, (x, y), the ‘x’ entries must be increasing in value throughout the table.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Table (Clear
syntax table clear n
arguments n | The table number
example // Clear table 1
table clear 1;
/] ...

The table clear statement clears all points from a table.

Table (Add)
syntax table add n (x , y)
arguments n The table number
X An expression for the ‘x’ entry of the point pair
y An expression for the ¢y’ entry of the point pair
example // Clear table 1, and add a few points

table clear 1;

table add 1 (0.1, 1.5);
table add 1 (0.2, 3.7);
table add 1 (.35, 4.1);
table add 1 (0.5, 5.9);
/] ...

The table add statement adds a point to the table. If the table is empty, a (0.0, 0.0) entry is inserted before adding
this point.

Table (From File)

syntax table add n from “filename”
arguments n The table number

filename The name of the file to load points from
example // Clear table 1, then add points from a file

table clear 1;
table add 1 from file “part.dat”
/] ...

The table add statement adds points to a table from a file containing a series of IEEE-754 single-precision floats.
The size of the file (in bytes) must be divisible by 8, or a run-time error will occur.
The table must be empty or a run-time error will occur.

The first entry in the file must be the point-pair (0.0, 0.0) or a run-time error will occur.

34-2201 Allied Motion Programmability Standard | AML

Pdlied Motion

Build (Spline)
syntax build spline n
arguments n | The table number
example // Build a Spline table
build spline 1;
I oco

The build spline statement builds a Spline table for later execution.

Build (Linear)
syntax build linear n
arguments n | The table number
example // Build a linear table
build linear 1;
/] ...

The build linear statement builds a Linear table for later execution.

Build (BSpline)

syntax build bspline n
build bspline3 n
build bspline4 n
build bspline5 n
build bspline6 n

arguments n | The table number
example // Build a degree-3 B-Spline table
build bspline 1;
47 ooo

// Build a degree-5 B-Spline table
build bspline5 2;

The build bspline statement builds a B-Spline table for later execution.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Table Start
syntax table start n tscale: timescale pscale: pscale
arguments n The table number to use for motion
timescale An expression that will be evaluated and used as a scale factor for the time
values within the table
pscale An expression that will be evaluated and used as a scale factor for the
position values within the table
example // Run table #2

table start 2 tscale: 1 pscale: 1;

The table start statement begins profile generation using the specified motion table containing (time, position)

pairs.

Table Stop

syntax table stop

example // Stop the active running table

table stop;

The table stop statement stops (time) table-based target profile generation.

CAM Start
syntax cam start n mscale: mscale sscale: sscale
arguments n The table number to use for CAM operation
mscale An expression that will be evaluated and used as a scale factor for the
master-feedback position values within the table
sscale An expression that will be evaluated and used as a scale factor for the
slave (axis) position values within the table
example // Run table #3

cam start 3 mscale: 1 sscale: 1.5;

The cam start statement begins target profile generation using the specified (CAM) table containing (position,

position) points. The CAM operation will continue unless a cam stop is issued or a fault occurs.

CAM tables are a way to simulate a mechanical CAM. CAM tables are built and executed in a similar way to their

time-based counterparts, with the exception that the last position in the CAM table must be zero as CAM tables

repeat and without the last position equaling the first, a discontinuity would occur.

CAM Stop
syntax cam stop
example // Stop the active running CAM table

cam stop;

The cam stop statement ends CAM table profile generation and enters the stopped target generator state.

34-2201 Allied Motion Programmability Standard | AML

Pdlied Motion

| FoLLOWING MOTION STATEMENTS

Follow Enter / Exit

syntax follow enter

follow exit

example // Enter following mode
follow enter;

/] ...

// Exit following mode
follow exit;

The follow enter statement enters following mode from a stopped target generator state.

The follow exit statement exits following mode and enters the stopped target generator state.

Gear At

syntax gear at: numerator : denominator

arguments numerator An expression that evaluates to the gear ratio numerator
denominator An expression that evaluates to the gear ratio denominator

example // Enter following mode

follow enter;

// Gear up at 1:1
gear at: 1 : 1;
M oo

The gear at statement changes the gear ratio. The change is made instantaneously.

Gear At In
syntax gear at: numerator : denominator in: icounts
arguments numerator An expression that evaluates to the gear ratio numerator
denominator An expression that evaluates to the gear ratio denominator
icounts An expression that evaluates to the number of master counts to apply the
gear ratio change within
example // Enter following mode

follow enter;

// Gear up at 1:1 in 1000 master counts
gear at: 1 : 1 in: 1000;

M ooo

// Gear up at ©:1 in 1000 master counts
gear at: @ : 1 in: 1000;

M ooo

The gear at in statement changes the gear ratio. The change is made gradually over some number of master
counts (icounts).

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Gear At In After

syntax gear at: numerator : denominator in: icounts after: acounts
arguments numerator An expression that evaluates to the gear ratio numerator
denominator An expression that evaluates to the gear ratio denominator
icounts An expression that evaluates to the number of master counts to apply the
gear ratio change within
acounts An expression that evaluates to the delay (in master counts) before the
change begins to occur
example // Enter following mode

follow enter;

// Gear up at 1:1 in 1000 master counts after 2000 have passed
gear at: 1 : 1 in: 1000 after: 2000;

/] ...

The gear at in after statement changes the gear ratio. The change is made gradually over some number of master

counts (icounts) and is started after some number of master counts has occurred (acounts).

Gear For In

syntax gear for: scounts in: mcounts

arguments scounts An expression that evaluates to counts of the slave
mcounts An expression that evaluates to counts of the master

example // Enter following mode

follow enter;

// Gear up at 1:1 in 1000 master counts

gear at: 1 : 1 in: 1000;

// Consume 1200 slave counts in the next 1000 master counts
gear for: 1200 in: 1000;

The gear for in statement calculates and temporarily modifies the active gear ratio such that a certain number of

slave counts (scounts) are consumed in a certain number of master counts (mcounts).

The adjustment can be thought of as superimposing a triangular move while gearing is active.

Gear For In After

syntax gear for: scounts in: mcounts after: acounts
arguments scounts An expression that evaluates to counts of the slave
mcounts An expression that evaluates to counts of the master
acounts An expression that evaluates to a delay (in master counts) before the
correction action occurs
example // Enter following mode

follow enter;

// Gear up at 1:1 in 1000 master counts

gear at: 1 : 1 in: 1000;

// Consume 1200 slave counts in the next 1000 master counts
// start the correction after 1100 master encoder counts
gear for: 1200 in: 1000 after: 1100;

The gear for in after statement calculates and temporarily modifies the active gear ratio such that a certain

number of slave counts (scounts) are consumed in a certain number of master counts (mcounts).

The adjustment, which occurs after a delay of acounts master counts, can be thought of as superimposing a

triangular move while gearing is active.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Offset Slave
syntax offset slave by: scounts in: time
arguments scounts An expression that evaluates to counts of the slave
time An expression that evaluates to the time to apply the correction (in
seconds)
example // Enter following mode

follow enter;

// Gear up at 1:1 in 1000 master counts

gear at: 1 : 1 in: 1000;

// Consume an additional 100 slave counts in the next 10 seconds
offset slave by: 100 in: 10;

The offset slave statement calculates and temporarily modifies the active gear ratio such that a certain number of

counts (scounts) of the slave are consumed within a certain time.

The adjustment can be thought of as superimposing a triangular move while gearing is active.

Wait Slave

syntax wait slave scounts

arguments scounts | An expression that evaluates to counts of the slave
example // Enter following mode

follow enter;

// Gear up at 1:1 in 1000 master counts

gear at: 1 : 1 in: 1000;

// Wait until 1000 slave counts have gone by
wait slave 1000;

// deactivate output 1

set output off (1);

The wait slave statement waits until a certain number of slave counts (scounts) have occurred.

Wait Master

syntax wait master mcounts

arguments mcounts | An expression that evaluates to counts of the master
example // Enter following mode

follow enter;

// Gear up at 1:1 in 1000 master counts

gear at: 1 : 1 in: 1000;

// Wait until 2000 master counts have gone by
wait master 2000;

// activate output 1

set output on (1);

The wait master statement waits until a certain number of master counts (mcounts) have occurred.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Clear Counters

syntax clear (list)
arguments List | A comma-delimited list of counters to clear (ASCx, AMCx, MSCx, MMCx)
example // Enter following mode

follow enter;

// Clear a few of the auxiliary master counters
clear master (AMC1, AMC2, AMC4);

/! ...

// Clear the first modulo slave counter

clear slave (MSC1);

/] ...

The clear statement clears one or more auxiliary slave counters (ASCx), modulo slave counters (MSCx), auxiliary

master counters (AMCx) or modulo master counters (MMCx).

Wait Within

syntax wait counter counter within lLower to upper

arguments counter One of the slave or master auxiliary or modulo position counters
Lower An expression that evaluates to the lower bounds
upper An expression that evaluates to the lower bounds

example // Enter following mode

follow enter;

// Gear up at 1:1 in 1000 master counts

gear at: 1 : 1 in: 1000;

// wait until input 1 transitions from off to on
wait for rise of 1;

// Clear the aux slave counter 1

clear slave (MSC1);

// Wait for MSC1 to be within 1000 to 1200

wait counter MSC1 within 1000 to 1200;

The wait counter within statement waits until the specified slave or master auxiliary or modulo position counter is

within some bounds.

Wait Not Within

syntax wait counter counter not within Lower to upper

arguments counter One of the slave or master auxiliary or modulo position counters
Lower An expression that evaluates to the lower bounds
upper An expression that evaluates to the lower bounds

example // Enter following mode

follow enter;

// Clear the aux slave counter 1

clear slave (MSC1);

// Gear up at 1:1 in 1000 master counts

gear at: 1 : 1 in: 1000;

// wait until input 1 transitions from off to on
wait for rise of 1;

// Wait for MSC1 to be outside of 1000 to 1200
wait counter MSC1 not within 1000 to 1200;

The wait counter outside statement waits until the specified slave or master auxiliary or modulo position counter is

outside of some bounds.

34-2201 Allied Motion Programmability Standard | AML

»dlied Motion

Anti Backup (On/Off)

syntax antibackup state
arguments state | ON/on or OFF/off
example // Enter following mode

follow enter;
// Don’t allow the master to “reverse”
antibackup on;

The antibackup statement turns anti-backup on or off.

Wait (Queue)
syntax wait queue n to var
arguments n The master-position queue number
var A variable to store the decremented position to
example // Wait for an item in the position queue
wait queue 2 to _delta;

The wait queue statement waits until a position in a master-position queue has decremented to 0 (or below).

A master-position queue is an ordered list of positions that decrement in value every time the master-position
decrements. Master-position queues can be used, for example, to keep track of upstream sensed objects in a
labeling application.

The specified variable, var, is used to hold the final de-queued value pulled from the queue —ideally, it is a zero
value, but it can be negative meaning that the POB didn’t get a chance to run in time. The value in var can be used
to offset some gearing operation.

Move (Slave)
syntax move slave by: dvar in: time
move slave by: -dvar in: time
arguments dvar A variable that holds the displacement to move (in counts)
time The time to move the slave back within (seconds); must be a numeric constant
or variable
example // move the slave back by the value in ASC1
move slave by: -ASC1 in: 0.2;

The move slave generates a trapezoidal move for the slave axis. The move is executed temporarily decoupled from
the master (in other words, not geared but in the following state).

The first form uses the dvar variable as is, whereas the second form negates the value from the variable before
use.

34-2201 Allied Motion Programmability Standard | AML m

Pdlied Motion

INPUT EVENT STATEMENTS

Input Events are used to perform one or more actions when a transition is detected on a digital input. Input Events
are managed by digital hardware and therefore can be used for precise operations such as high-speed position
capture and registration.

Define Event (Input-Triggered)

syntax define event eventid {
transition of n
conditions (conditions)
actions (actions)

}
arguments eventid IEVT1 through IEVT8
transition Either rise, fall or edge
n A digital input number
conditions A comma-delimited list of conditions
actions A comma-delimited list of actions
example // Define event IEVT2 to clear AMC2 and start the POB “cap2Detected”

// when input #2 rises and input #3 is off
define event IEVT2 {

rise of 2

conditions (gate 3 off)

actions (clear AMC2, start cap2Detected)
¥
// enable monitoring of the event
enable IEVT2;
M oo

The define event statement defines (or re-defines if there is an existing definition) what to do when a digital input
makes a transition. A list of conditions can govern whether or not the event actions are processed when the
transition occurs.

: CONDITIONS
Gate (Condition)
syntax gate n state
arguments n A digital input number
state Either on or off
example define event IEVT1 {
rise of 1
conditions (gate 2 on)
M ooo
i
definition The gate condition is used to “logically and” the transition with the state of another input. If
the gating input is not at the specified condition when the 10 Event transition occurs, the
transition will be ignored and no actions will be taken.

34-2201 Allied Motion Programmability Standard | Input Event Statements

Pdlied Motion

Window (Condition)
syntax window var min: min max: max
arguments var A variable used for comparison
min A constant used as the minimum allowed value
max A constant used as the maximum allowed value
example define event IEVT1 {
rise of 1
conditions (window AMC2 min: 100 max: 250)
M 000
s
definition The window condition is used to gate the transition with a value of a variable. If the named
variable does not lie between the specified bounds when the 10 Event transition occurs, the
transition will be ignored and no actions will be taken.

Outside Window (Condition)
syntax outside window var min: min max: max
arguments var A variable used for comparison
min A constant used as the minimum allowed value
max A constant used as the maximum allowed value
example define event IEVT1 {
rise of 1
conditions (outside window AMC2 min: 100 max: 3900)
/] ...
s
definition The outside window condition is used to gate the transition with a value of a variable. If the
named variable lies between the specified bounds when the 10 Event transition occurs, the
transition will be ignored and no actions will be taken.

| ACTIONS

Clear Counter (Action)

syntax clear counter
arguments counter One of the slave or master auxiliary or modulo
position counters
example define event IEVT1 {
rise of 1
/] ...
actions (clear MMC1)
i
definition The clear counter action clears one of the slave or master auxiliary or modulo position
counters.

34-2201 Allied Motion Programmability Standard | Input Event Statements

»dlied Motion

Enable/Disable 10 Event (Action)
syntax enable eventid
disable eventid
arguments eventid | IEVT1 through IEVTS
example define event IEVT1 {
rise of 1
I oo0o
actions (enable IEVT2, disable IEVT1)
s
definition The enable action enables monitoring of an Input Event. The disable action disables
monitoring of an Input Event.
Copy (Action)
syntax copy srcvar destvar
arguments srcvar The source variable
destvar The destination variable
example define event IEVT1 {
rise of 1
M ooo
actions (copy AMC1 lastAMC1, clear AMC1)
s
definition The copy action stores the value of the source variable (srcvar) to the destination variable
(destvar).
Start (Action)
syntax start pob
arguments pob | The name of the POB to start
example define event IEVT1 {
rise of 1
/] ...
actions (start gotCapture)
s
definition The start action starts a POB (in foreground).

Queue (Action)

syntax queue n var
arguments n The master-position queue to add a value to
var A variable whose current value will be added to the
master-position queue
example define event IEVT1 {
rise of 1
M ooo
actions (queue 1 itemOffset)
)i
definition The queue action adds an item to a master-position queue. A master-position queue is an

ordered list of positions that decrement in value every time the master-position decrements.
Master-position queues can be used, for example, to keep track of upstream sensed objects in
a labeling application.

34-2201 Allied Motion Programmability Standard | Input Event Statements

Pdlied Motion

Enable/Disable Event (Input-Triggered)

syntax enable eventid

disable eventid
arguments eventid | TEVT1 through IEVTS
example // enable monitoring of event 3

enable IEVT3;

// disable monitoring of event 4
disable IEVT4;

/] ...

The enable event statement enables monitoring of an Input Event. When an event is defined (or redefined),
monitoring of the event is initially disabled and the enable event statement must be used to enable it.

The disable event statement disables monitoring of an Input Event. No action is performed when an Input Event is
disabled.

INPUT EVENT OBJECTS

When an event occurs, several fields within the event object are modified. These fields are accessed using the
object field operator (‘) on the event object.

For example, to access the feedback position captured at the time of the event is triggered for event /EV1, the
expression IEV1’FPOS is used.

A list of fields within all Input Event objects follows.

Field Description

FPOS The value of FPOS when the event occurred

FPOSC The value of FPOSC when the event occurred

MPOSC The value of the master position counter when the event occurred

ASCn The value of the auxiliary slave counter #n when the event occurred
AMCn The value of the auxiliary master counter #n when the event occurred
MSCn The value of the modulo slave counter #n when the event occurred
MMCn The value of the modulo master counter #n when the event occurred
DSCF, DSCT The values of the system variables DSCF or DSCT when the event occurred

34-2201 Allied Motion Programmability Standard | Input Event Statements

T
llied Motion

COMMUNICATION STATEMENTS

Unsolicited Message

syntax umsg port id (expression)

arguments port The UDP port to transmit the message on (1100-9999)
id An identification code for the message
expression Data to transmit (transmitted as a float)

example // Wait for input 1 to rise

wait for rise of 1;

// Tell someone about it
umsg 1200 100 (TPOS);
/] ...

The umsg statement sends an unsolicited message to a waiting listener or listeners. Receivers can listen on one or
more ports as well as filtering by id.

Outgoing messages are buffered locally within the controller for transmission.

Stream
syntax stream channel var
stream channel end
stream end
arguments channel The channel to stream on (©-15)
var The (system global) variable to stream
example // Stream MPOSC to the world on channel 2
stream 2 MPOSC;

The first form of the stream statement streams the value of a system global variable to one or more awaiting
listeners. To stream multiple variables, different channels can be used.

There is no guarantee on the synchronicity or period between transmissions. If fixed-period, cyclic data is
required, use the streaming methods and events from the IP class in the ALLNET framework.

The second form of the stream statement ends streaming on the channel.

The third form of the stream statement ends all streaming on all channels.

34-2201 Allied Motion Programmability Standard | Communication Statements

»dlied Motion

| COMMUNICATION EVENT STATEMENTS

Communication Events are used to perform one or more actions when a message is received through a fieldbus.
Unlike 10 Events, communication events are buffered on receipt so multiple messages may be queued for later
processing.

Define Event (Communication Triggered)

syntax define event eventid {

port n

conditions (conditions)
actions (actions)

}
arguments eventid CEVT1 through CEVT8
n A port number to listen on
conditions A comma-delimited list of conditions
actions A comma-delimited list of actions
example // Define event CEVT1
define event CEVT2 {

port 2

conditions (gate 3 off)

actions (clear AMC2, start cap2Detected)

)

// enable monitoring of the event
enable IEVT2;

M oo

The define event statement defines (or re-defines if there is an existing definition) what to do when a message
arrives on a channel. A list of conditions can govern whether or not the event actions are processed when a
message is received.

. CONDITIONS

ID (Condition)
syntax id n
arguments n | An ID to match
example define event CEVT1 {
port 1
conditions (id 100)
M ooo
)i
definition The id condition is used to match against a given ID in a message. Use of multiple id conditions
is allowed to match several different ids.

34-2201 Allied Motion Programmability Standard | Communication Statements m

Pdlied Motion

| ACTIONS

Enable/Disable Communication Event (Action)

syntax enable eventid
disable eventid
arguments eventid | CEVT1 through CEVTS
example define event CEVT1 {
M 000
actions (enable CEVT2)
s
definition The enable action enables monitoring of a Communication Event. The disable action disables

monitoring of a Communication Event.

Copy (Action)
syntax copy field as type to destvar
arguments field A field number (index within the message, @=first)
type Either int32 or float32
destvar The destination variable
example define event CEVT1 {
7 coo
actions (copy @ as float32 to index_distance)
s
definition The copy action stores the value of a field contained in the message to the destination variable
(destvar).
Start (Action)
syntax start pob else drop
start pob else queue
arguments pob | The name of the POB to start
example define event CEVT1 {
/] ...
actions (start msgHandler else drop)
s
definition The start action starts a POB (in foreground).

If the POB is presently running, and the condition specified is drop then the message if
effectively ignored.

If the POB is presently running, and the condition specified is queue then the message is
queued to be processed later when the POB finishes running.

34-2201 Allied Motion Programmability Standard | Communication Statements

Pdlied Motion

Enable/Disable Event (Communication Triggered)

syntax enable eventid
disable eventid

arguments eventid | CEVT1 through CEVTS

example // enable monitoring of communication event 3
enable CEVT3;
/] ...

The enable event statement enables monitoring of a Communication Event. When an event is defined (or
redefined), monitoring of the event is initially disabled and the enable event statement must be used to enable it.

The disable event statement disables monitoring of the specified event. No action is performed when an Input
Event is disabled.

34-2201 Allied Motion Programmability Standard | Communication Statements m

I‘I’I{e—a Motion

POB FIELDS

The following fields are available to query a POB on its status.

‘first Non-zero if this is the first time running this POB since power-up
‘isRunning Non-zero if the POB is running (or suspended)

‘isSuspended Non-zero if the POB is suspended

‘isWaiting Non-zero if the POB is executing any wait statement
‘notRunning Non-zero if the POB is not running (and not suspended)

34-2201 Allied Motion Programmability Standard | POB Fields m

xilied Motion

SYSTEM VARIABLES

STATUS VARIABLES

Access Scaling/Limits _ Description

ANTIB R/O Non-zero if anti-backup is engaged

C_NEGONE R/O A constant negative one (-1.0)

C_ONE R/O A constant one (1.0)

C_PI R/O A constant pi (3.14159265)

C_ZERO R/O A constant zero (0.0)

ENABLED R/O Non-zero if the drive is enabled

FAULT_D R/O Drive-related fault bit-field

FAULT_M R/O Motion-related fault bit-field

FAULT_N R/O Non-Motion -related bit-field

FAULTED R/O Non-zero if the drive is faulted

INPOS R/O Non-zero if motion is complete and the axis is within the “in
position” window

INS R/O A bit-field representing the state of the digital inputs; bits are
accessible using the ‘#’ operator

OuUTS R/O A bit-field representing the state of the digital outputs; bits are
accessible using the ‘#’ operator

OVER_FE R/O Non-zero if the following error limit (LIM_FE) has been exceeded

OVER_N R/O Non-zero if the negative over-travel input is tripped

OVER_P R/O Non-zero if the positive over-travel input is tripped

OVER_Q R/O Non-zero if the “quick stop” input is tripped

OVER_TRQ R/O Non-zero if a torque limit is active (commanded torque exceed
LIM_TRQ)

POB_BG R/O The number of active background POBs

POB_FG R/O The number of active foreground POBs

RC R/O Iteration counter

TIMER VARIABLES

Symbol Access Scaling/Limits _ Description

TIME_G R/W seconds Global writeable timer (0 at power-up)

TIME_|I R/W ticks Private, writeable POB-based counter (0 when the POB starts
execution, incremented by one each time the POB runs)

TIME_P R/W seconds Private, writeable POB-based timer (0 when the POB starts
execution)

34-2201 Allied Motion Programmability Standard | System Variables

Y
llied Motion

TARGET GENERATOR VARIABLES

Access Scaling/Limits Description

ACC ' R/W ' user-units/secz " The default acceleration rate for move statements where none is
specified

DEC R/W user-units/sec2 The default deceleration rate for move statements where none
is specified

FCPR R/O counts Feedback (slave) counts/motor revolution; a derived value based
upon the motor feedback source

FPOS R/O user-units Feedback position

FPOSC R/O counts Feedback position

GVRATE R/W Global VRATE applied to all axes; see VRATE

LIM_FE R/W user-units Absolute following error limit (O=no following error limit)

LIM_NOT R/W user-units Negative, software-based over-travel limit

LIM_POT R/W user-units Positive, software-based over-travel limit

LIM_TRQ R/W Nm Absolute torque limit

STATE_TBL R/O Non-zero if the axis is executing a table start or cam start
statement

STATE_FOLLOW R/O Non-zero if the axis is in the FOLLOWING state

STATE_PBV R/O Non-zero if the axis is in the PBV state

STATE_STOP R/O Non-zero if the axis is in the STOPPED state

TPOS R/O user-units Target position

TPOS_LAST R/O user-units Previous value of TPOS prior to the execution of a set target,
offset target or zero following error statement

TPOS_NZ R/O user-units The absolute position of the next index pulse (incremental

encoder), zero position (absolute encoder or resolver) in the
negative direction; used in homing

TPOS_PZ R/O user-units The absolute position of the next index pulse (incremental
encoder), zero position (absolute encoder or resolver) in the
positive direction; used in homing

TPOSC R/O counts Target position

uub R/W User-units scale factor; command arguments are divided by this
value (after multiplying by UUN) to scale user-units to motor
revolutions

UUN R/W User-units scale factor; command arguments are multiplied by
this value (and then divided by UUD) to scale user-units to motor
revolutions

VRATE R/W The velocity scale for time-based move statements. Default

value of 1.0 at power-up. When set to a value less than 1,
velocities are scaled down. When set to a value greater than 1,
velocities are scaled up.

ZPULSE R/O Non-zero if a transition of the marker pulse has occurred on the
feedback encoder or if absolute feedback is employed

34-2201 Allied Motion Programmability Standard | System Variables

T
llied Motion

TARGET GENERATOR VARIABLES (FOLLOWING)

Symbol ~Access Scaling/Limits _ Description

AMCO-AMC3 R/O counts Auxiliary master counters

ASCO-ASC3 R/O counts Auxiliary slave counters; based on feedback

DSCF R/W counts A slave-based counter that decrements for each count of the
slave feedback

DSCT R/W counts A slave-based counter that decrements for each count of the
slave target

GAIM R/O counts Holds the number of counts of the master that occurred during
the execution of the last gear at in or gear at in after statement

GAIS R/O counts Holds the number of counts of the slave that occurred during the
execution of the last gear at in or gear at in after statement

GFIM R/O counts Holds the number of counts of the master that occurred during
the execution of the last gear for in or gear for in after statement

GFIS R/O counts Holds the number of counts of the slave that occurred during the
execution of the last gear for in or gear for in after statement

GR R/O Active Gear Ratio

INVM R/W Set to ‘1’ to invert the direction in which the master feedback
source counts

MCPR R/W counts Feedback (master) counts/revolution

MMCO-MMC3 R/O counts Modulo master counters

MODM R/W counts Modulus for the master modulo counters; a value of zero
disables the modulo functionality

MODS R/W counts Modulus for the slave modulo counters; a value of zero disables
the modulo functionality

MPOSC R/O counts Master position

MSCO0-MSC3 R/O counts Modulo slave counters; based upon feedback

OFFS R/O counts Holds the number of counts of the slave that occurred during
execution of the last offset slave statement

SMARK R/O counts A (target-based) slave modulo counter computed on an input
transition (specified by SMARK_RISE and/or SMARK_FALL);
SMARK is computed as: SMARK = SPHASE - SMODC

SMARK_RISE R/W A bit-field on when to compute SMARK based upon the rising
transition of one or more inputs

SMARK_FALL R/W A bit-field on when to compute SMARK based upon the falling
transition of one or more inputs

SMODC R/W counts A modulo slave counter; based upon target. Itis used to
compute SMARK.

SPHASE R/W counts The phase modulo slave position used in computing SMARK

TMC1-TMC2 R/W counts Temporary master counters

TSC1-TSC2 R/W counts Temporary slave counters; based upon target

TSC1_RISE R/W A bit-field on when to clear TSC1 based upon the rising transition
of one or more inputs

TSC1_FALL R/W A bit-field on when to clear TSC1 based upon the falling transition
of one or more inputs

TSC2_RISE R/W A bit-field on when to clear TSC2 based upon the rising transition
of one or more inputs

TSC2_FALL R/W A bit-field on when to clear TSC2 based upon the falling transition
of one or more inputs

WAITM R/O counts Holds the actual number of counts of the master that occurred
during the execution of the last wait slave statement

WAITS R/O counts Holds the actual number of counts of the slave that occurred

during the execution of the last wait slave statement

34-2201 Allied Motion Programmability Standard | System Variables

Pdlied Motion

34-2201 Allied Motion Programmability Standard | System Variables

Pdlied Motion

COMMUNICATION AND COMPILER SUPPORT

The ALLNET .NET assembly provides the means to communicate with a single-axis drive or multi-axis controller.

The AMLCompiler .NET assembly provides a means (through the class AMLCompiler) of translating the textual AML
language into opcode POBs that the VM running on a drive or controller can execute.

The abstract class IALLNET within the ALLNET assembly provides support for serial (through the subclass
ALLNET.Serial) and Ethernet (through the subclass ALLNET.IP) communications.

Although there are many methods available within the AMLCompiler, IALLNET and IP classes, only those methods
related to programmability are highlighted here.

AMLCOMPILER.AMLCOMPILER CLASS

AMLCompileResult CompileAML(string code)

This method translates some AML textual code into a downloadable POB and returns an object (of type
AMLCompileResult) containing the results of the translation. The AMLCompileResult class has properties to
interrogate whether the translation succeeded or not (test if the property, Errors.Count > 0) and a list (the
property, List<ParseError> Errors) of any errors.

ALLNET.IP CLAss

bool POBPrepare()

This method attempts to clear all in-memory (and FLASH file-system) POBs in preparation for subsequent
UploadPOBFile invocations. The POBPrepare method stops all running POBs on the drive or controller.

bool POBControl (POBOPERATION op, int axis = -1, string POBname = null)
This method starts (either FG or BG), stops, suspends and unsuspends POBs.
bool UploadPOBFile(string filename, byte[] contents, bool Lload)

This method attempts to download the translated POB to the drive. If the drive has a POB existing with the
specified filename it is replaced. The parameter load should be true to load this POB into memory ready for
execution. The byte array contents is from the AMLCompileResult method POBasBytes().

34-2201 Allied Motion Programmability Standard | Communication and Compiler Support

Y
llied Motion

VIRTUAL MACHINE

The virtual machine (VM) that executes the variable-length opcodes output by the translator has a stack-based
architecture optimized for the AML.

The second generation of the VM (called VMr2) is used in conjunction with AML.

The VM has 16 general purpose read/write registers (R0O-R15 per axis), 16 read-only (within the VM) parameter
registers (PO-P15) and an integer T (iteration) per POB register.

VM REGISTERS

Per axis registers RO-R15 can hold integer and floating-point values. These registers are cleared at power-up. RO-
R15 are read/write within the VM as well as the outside world via serial (ALLNET/Serial) and Ethernet (ALLNET/IP)
communications.

Per controller registers PO-P15 hold floating-point values. These registers are non-volatile. These parameter
registers are read/write from the outside world, using by using serial (ALLNET/Serial) and Ethernet (ALLNET/IP).
The VM can only read these registers.

The 16-bit T register (per POB) is exclusively used to count iterations (loops) in a POB. It is read/write within in a
POB.

34-2201 Allied Motion Programmability Standard | Virtual Machine

»dlied Motion

0x001x CALLX OFFSET

The CALLX op does a call to a firmware-based function with a variable number of arguments (where x is the
number of arguments to the call).

0x0050 MSTPI

The MSTPI (motion stop immediate) immediately stops target generation and effectively aborts the commanded
motion in progress.

0x0051 MSTPS

The MSTPS (motion stop slewed) stops target generation by ramping the target velocity to 0 using the rate
programmed in STOPRATE (VMr1) or on the stack (VMr2) effectively ending the commanded motion in progress.

0x0100 PUSHCI int32
0x0101 PUSHCL int64
0x0103 PUSHCD float64

The PUSHCx ops push numeric constants onto the VM stack.
0x0106 PUSHX FLAGS, VAR

The op PUSHX pushes the value of a variable or parameter onto the VM stack. The parameter var points to a 4-
byte sequence (0x0, 0x0, 0x0, 0x0) followed by the variable name (as a null-terminated string) in the data region,
unless LCL=1 or SYS=1. Flags are a bit-field (pertaining to var) of:

Bit0: Reserved (0)
Bit1: 0= User Variable (UV), 1 = System Variable/Parameter (SYS)
Bit2: 0= Global Variable (G), 1 = Local (to POB) Variable (LCL)

0x0107 STORX FLAGS, VAR

The op STORX pops the value on the stack and stores it into a variable or parameter. The parameter var pointsto a
4-byte sequence (0x0, 0x0, 0x0, 0x0) followed by the variable name (as a null-terminated string) in the data region,
unless LCL=1 or SYS=1. Flags are a bit-field (pertaining to var) of:

Bit 0: Reserved (0)
Bit 1: 0= User Variable (UV), 1 = System Variable/Parameter (SYS)
Bit 2: 0 =Global Variable (G), 1 = Local (to POB) Variable (LCL)

34-2201 Allied Motion Programmability Standard | Virtual Machine

Pdlied Motion

0x0110 ATBEG

This op enters atomic mode and is used to implement the atomic block.
0x0111 ATEND

This op exits atomic mode and is used to implement the atomic block.
0x0120 AXIS AXES

This op defines the axes to forward the following instructions to. The bit-field axes is used to determine which
axes to send to.

0x0121 AXEND

This op marks the end of forwarding and is used in conjunction with AXIS.

34-2201 Allied Motion Programmability Standard | Virtual Machine

»dlied Motion

0x0200 CMPEQ
0x0201 CMPNE
0x0202 CMPLT
0x0203 CMPGT
0x0204 CMPLE
0x0205 CMPGE

These ops compare two arguments on the VM stack and replace those arguments with a 1 on the stack if the
comparison evaluates to true, otherwise the arguments are replaced with a 0.

Note: these operations pop b from the stack, then pop a from the stack and leave a==b, a!=b, a<b, a>b, a<=b or
a>=b on the stack, respectively.

0x0206 LOR
0x0207 LAND
0x0208 LNOT

These ops logically or, and or invert arguments on the VM stack. These ops implement the AML operators || (or),
&& (and) and ! (not).

0x0209 BOR
0x020A BAND
0x020B BNOT

These ops bitwise or, and or invert arguments on the VM stack. These ops implement the AML operators | (or), &
(and) and ~ (not).

0x020C ADD
0x020D SUB
0x020E MUL
0x020F DIV

These ops perform calculations of arguments on the VM stack. These ops implement the AML operators + (add), -
(subtract), * (multiply) and / (divide).

Note: these operations pop b from the stack, then pop a from the stack and leave a+b, a-b, a*b or a/b on the
stack, respectively.

0x0210 NEG

This op negates the argument on the VM stack and implements the - (unary negate) AML operator.

34-2201 Allied Motion Programmability Standard | Virtual Machine

»dlied Motion

0x0211 MOD

This op performs a modulo of the arguments on the VM stack and implements the % (modulo) AML operator.

Note: these operation pops b from the stack, then pops a from the stack and leaves a%b on the stack.
0x0212 BIT

This op implements the # (bit-access) AML operator.

0x0213 ABS

This op performs an absolute value of the argument on the VM stack.

0x0225 TINPOS

This op pushes the value of the system variable INPOS onto the VM stack.

0x0240 VEC VEC, STORE

This op implements vector subscripting of the vector numbered vec. Index is on the top of the VM stack. When
store is ‘1’, a store should occur otherwise a load.

0x0241 TBL 7BL, STORE

This op implements table subscripting of the table numbered tbl. Indices are on the top of the VM stack. When
store is ‘1’, a store should occur otherwise a load.

0x0270 PS ON

This op implements the seek on AML statement.
0x0271 PS OFF

This op implements the seek off AML statement.
0x0272 RESET

This op attempts to reset a hardware or run-time fault.
0x0273 RET

This op returns from a BSUB, BSUBZ or BSUBNZ user call.

34-2201 Allied Motion Programmability Standard | Virtual Machine

»dlied Motion

0x0280 ALVEC vec

This op implements vector memory allocation of the vector numbered vec. The new size of the vector is on the VM
stack.

0x0281 ALTBL 8L

This op implements table memory allocation of the table numbered tbl. The new size (number of rows, number of
columns) is on the VM stack.

0x0300 BR ADDR
This op unconditionally alters POB program flow to the specified address.
0x0301 BRZ ADDR

This op conditionally alters POB program flow to the specified address when the argument on the VM stack has a
zero value.

0x0302 BRNZ ADDR

This op conditionally alters POB program flow to the specified address when the argument on the VM stack has a
non-zero value.

0x0311 BTZ ADDR
This op conditionally alters POB program flow to the specified address when the “T-register” has a zero value.
0x0312 BTNZ ADDR

This op conditionally alters POB program flow to the specified address when the “T-register” has a non-zero value.

34-2201 Allied Motion Programmability Standard | Virtual Machine m

»dlied Motion

0x0320 BSUB ADDR

This op unconditionally alters POB program flow and calls the subroutine located at specified address. The
subroutine must end with a RET instruction. Subroutine return addresses are located on a separate return address
stack within the VM.

0x0321 BSUBZ ADDR

This op conditionally alters POB program flow and calls the subroutine located at the specified address when the
argument on the VM stack has a zero value. The subroutine must end with a RET instruction. Subroutine return
addresses are located on a separate return address stack within the VM.

0x0322 BSUBNZ ADDR

This legacy op conditionally alters POB program flow and calls the subroutine at the specified address when the
argument on the VM stack has a non-zero value. The subroutine must end with a RET instruction. Subroutine
return addresses are located on a separate return address stack within the VM.

0x0303 WRISE v

This op waits for the rise (off-to-on transition) of the digital input numbered n.
0x0304 WFALL N

This op waits for the fall (on-to-off transition) of the digital input numbered n.
0x0306 WINPOS

This op implements the wait for in position statement.

0x0307 WAITQ N, FLAGS, VAR

This op implements the wait queue statement. The value n is the master-position queue number. The parameter
var points to a 4-byte sequence (0x0, 0x0, 0x0, 0x0) followed by the variable name (as a null-terminated string) in
the data region, unless LCL=1 or SYS=1. Flags are a bit-field (pertaining to var) of:

Bit 0: Reserved (0)
Bit 1: 0= User Variable (UV), 1 = System Variable/Parameter (SYS)
Bit 2: 0 =Global Variable (G), 1 = Local (to POB) Variable (LCL)

34-2201 Allied Motion Programmability Standard | Virtual Machine

»dlied Motion

0x0400 START POB, FLAGS

This op starts or restarts a POB. The parameter pob points to a 4-byte sequence (0x0, 0x0, 0x0, 0x1) followed by a
POB name (as a null-terminated string) in the data region. Flags are a bit-field (pertaining to pob) of:

Bit0: Reserved (0)

Bitl: O0=FG,1=BG

Bit2: 0 =start (ST), 1 = restart (RST)
0x0401 END
This op ends execution of this POB.

0x0402 ABSUS POB, FLAGS

This op stops, suspends or reactivates a suspended POB. The parameter pob points to a 4-byte sequence (0xO0,
0x0, 0x0, 0x1) followed by a POB name (as a null-terminated string) in the data region. Flags are a bit-field
(pertaining to pob) of:

Bit0: Reserved (0)
Bit1: 0=one (ONE), 1=all POBs (ALL)
Bit2: 0=stop (STP), 1 = suspend operation (SOP)
Bit3: 0=suspend (SUS), 1 = un-suspend (UNS)
0x0403 MSTOP FLAGS
This op stops motion (implements the motion stop statement). Flags are a bit-field of:
Bit0: 0=abrupt (AB), 1 = rate-limited (RL)
0x0404 DREN
This op implements the enable drive statement.

0x0405 DRDIS

This op implements the disable drive statement.

34-2201 Allied Motion Programmability Standard | Virtual Machine

Pdlied Motion

0x0407 DELAY
This op implements the wait statement — the time (in milliseconds) to wait is on the VM stack.

0x0408 ZERO

This op zeros the target position and is equivalent to set target position: 0.
0x0409 RELAX

This op zeros the following error.

34-2201 Allied Motion Programmability Standard | Virtual Machine

»dlied Motion

0X040A SETT FLAGS

This op implements the set target and offset target statements. The argument of the operation is on the VM stack.
Flags are a bit-field of:

Bit0: 0 =set(SET), 1 = offset (OFS)
Bit1: 0= user-units (UU), 1 = counts (CNT)

0x040B OUT ONBITS, OFFBITS

This op changes the state of one or more digital outputs. The bit-field onbits contains which digital outputs to
activate. The bit-field offbits contains which digital output to deactivate.

0x040C SETOUT onsITs

This legacy op changes the state of digital outputs. The bit-field onbits contains which digital outputs to activate.
0x040D CLROUT oFfrBITS

This legacy op changes the state of digital outputs. The bit-field offbits contains which digital output to deactivate.
0x040E PULSEOUT N~

This op activates a digital output for a period of time. The output number n is part of the instruction, whereas the
period is on the VM stack.

34-2201 Allied Motion Programmability Standard | Virtual Machine m

»dlied Motion

0x040F PLS FLAGS, V, N, PCOUNT, CPAIRS

This op defines (or redefines) a PLS for the output numbered n.

The parameter v (and its associated flags) define the reference variable for the PLS. The parameter v points to a 4-
byte sequence (0x0, 0x0, 0x0, 0x0) followed by the variable name (as a null-terminated string) in the data region,
unless SYS=1.

The list of ranged on condition pairs (cpairs) for the PLS immediately follows the op. The number of on condition
pairs is contained in pcount.

Flags are a bit-field (pertaining to v) of:

Bit0: Reserved (0)
Bit1: 0= User Variable (UV), 1 = System Variable/Parameter (SYS)

0x0410 PLSON N, FLAGS

This op enables (or disables) the defined PLS for the output numbered n. Flags are a bit-field of:

Bit0: 0=disable PLS (D), 1 = enable PLS (E)
0x0420 TIMBEG ADDR

This op begins a timeout block and is used to implement the within block. The timeout is located on the VM stack.
The address argument addr is the destination for when the timeout occurs.

0x0421 TIMEND
This op ends a timeout block and is used to implement the within block.
0x0422 POBSTAT POB, N

This op pushes the state of a POB related status variable (n) on the stack. The parameter pob points to a 4-byte
sequence (0x0, 0x0, 0x0, 0x1) followed by a POB name (as a null-terminated string) in the data region.

34-2201 Allied Motion Programmability Standard | Virtual Machine

Pdlied Motion

0x0430 LDT x

This op loads the “T-register” with the value x.

0x0431 INCT

This op increments the “T-register”.

0x0432 DECT

This op decrements the “T-register”.

0x0433 PUSHT

This op pushes the “T-register” to the stack.

0x0434 POPT

This op pops a value from the stack and stores it in the “T-register”.

0x0435 TRIGN

This op implements “trigger next”.

34-2201 Allied Motion Programmability Standard | Virtual Machine m

Pdlied Motion

0x0504 ONFAULT PoB, FLAGS
0x0504 ONFAULT IGNORE

This op defines the global fault handler. Flags are a bit-field (pertaining to pob) of:

Bit0: Reserved (0)
Bit1l: always1l
(Bit2: bitis set to 1 with IGNORE)

The parameter pob points to a 4-byte sequence (0x0, 0x0, 0x0, 0x1) followed by a POB name (as a null-terminated
string) in the data region.

34-2201 Allied Motion Programmability Standard | Virtual Machine

Pdlied Motion

0x0600 STACK N

This op allocates n words of VM stack space for use by local POB variables. The STACK instruction is always the first
op in a POB (located at address 0).

0x0602 DRAD ADDR

This op informs the VM of the location (specified by addr) of the data region. The DRAD instruction is always the
second op in a POB (located at address 4).

0x0603 DATA ENDADDR

This op marks the data region. The next code area (if any) is specified in endaddr.

34-2201 Allied Motion Programmability Standard | Virtual Machine

»dlied Motion

0x0610 LINK DVAR, FLAGS1, VAR1, CON1, FLAGS2, VAR2, CON2, OFFSET, MIN, MAX

This op implements the link statement.
DVAR specifies which destination system variable to link to.
FLAGS1 are a bit-field (pertaining to VAR1) of:

Bit0: Reserved (0)
Bit1: 1= System Variable/Parameter (SYS)
Bit2: alwaysO

FLAGS?2 are a bit-field (pertaining to VAR2) of:

Bit0: Reserved (0)
Bit1: 1= System Variable/Parameter (SYS)
Bit2: alwaysO

The constants CON1, CON2, OFFSET, MIN and MAX are floating-point constants.

The parameters VAR1 and VAR2 point to a 4-byte sequence (0x0, 0x0, 0x0, 0x0) followed by the variable name (as
a null-terminated string) in the data region, unless SYS=1.

0x0611 UNLINK bvAr

This op implements the unlink statement.

DVAR specifies which destination system variable to be unlinked.
0x0612 CAPTURE

This op implements the capture statement.

0x0613 CAPABORT

This op implements the capture abort statement.

0x0614 UMSG PORT, ID

This op implements the AML umsg statement. The result of the expression specified in the umsg statement is on
the VM stack.

34-2201 Allied Motion Programmability Standard | Virtual Machine m

Pdlied Motion

0x0615 TBLOP TABLE, COMMAND

This op implements various table-based motion statements.

A command value of 0, indicates a table clear.

A command value of 1, indicates a table add, where the point-pair is on the VM stack.

A command value of 4, indicates a build spline.

A command value of 5, indicates a build linear.

Command values of 6-9, indicates a build bspline (6=degree 3 through 9=degree 6).

A command value of 10, indicates a table start. The arguments to table start are on the VM stack.
A command value of 11, indicates a table stop.

A command value of 12, indicates a cam start. The arguments to cam start are on the VM stack.

A command value of 13, indicates a cam stop.

34-2201 Allied Motion Programmability Standard | Virtual Machine m

»dlied Motion

0x0800 CLRC Asc, AMC, MSC, MMC

This op clears one or more of the following mode counters. The arguments to the op are bit-fields on which
counters to clear.

0x0801 WCW n, FLAGS

This op implements the wait counter within and wait counter not within statements. N represents the counter
number to wait on. Flags are a bit-field of:

Bit0: 0 =within (WIN), 1 = not within (NWIN)
Bit 1: 1 =counter group ASCx (ASC)

Bit2: 1 =counter group AMCx (AMC)

Bit3: 1 =counter group MSCx (MSC)

Bit4: 1 =counter group MMCx (MMC)

The lower and upper bounds are on the VM stack.
0x0802 ANTIB v

This op turns anti-backup on (n=1) or off (n=0).
0x0803 COUPLE src,N

This op implements couple master.

0x0804 WAITV

This op implements wait virtual.

0x0805 MV_START

This op implements move virtual which starts a new virtual move. The first pop from the stack is the rate:. The
next pop from the stack is the number of counts (for:). The last pop from the stack is the frequency (at:).

0x0806 MIV_ALTER

This op implements move virtual which alters an in-progress virtual move. The first pop from the stack is the new
rate:. The last pop from the stack is the new frequency (at:).

0x0807 MV_STOP

This op implements move virtual stop which stops an in-progress virtual move.

34-2201 Allied Motion Programmability Standard | Virtual Machine

Pdlied Motion

0x0808 F_ENTER

This op implements follow enter.
0x0809 F_EXIT

This op implements follow exit.
0x080A GEARAT

This op implements gear at.
0x080B GEARFOR

This op implements gear for.
0x080C WAITS

This op implements wait slave.
0x080D WAITM

This op implements wait master.
0x080E OFFSLV

This op implements offset slave.

34-2201 Allied Motion Programmability Standard | Virtual Machine

»dlied Motion

0x0900 IEVTDEF N, TRANS, DIN

This op begins the definition of an input-triggered event. N is the event ID (1=IEVT1 through 8=IEVT8), trans is
RISE(1), FALL(2) or EDGE(3), and din is the digital input associated with the event.

Condition ops (0x0910-0x092F) and/or Action ops (0x0930-0x094F) follow until an [EVTEND op.
0x0901 IEVTEND

This op ends the definition of an input-triggered event.

0x0902 IEVTE N

This op enables the input-triggered event numbered n.

0x0903 IEVTD N

This op disables the input-triggered event numbered n.

0x0910 IEVTGATE DIN, STATE

This input-triggered event condition op defines a gating condition. The din argument is the digital input number to
gate on and state is ON(1) or OFF(0).

34-2201 Allied Motion Programmability Standard | Virtual Machine

»dlied Motion

0x0911 IEVTWIND FLAGS, VAR, MIN, MAX

This input-triggered event condition op defines a window inside condition on the variable var. Flags are a bit-field
(pertaining to var) of:

Bit0: Reserved (0)

Bit1: 0= User Variable (UV), 1 = System Variable/Parameter (SYS)
Bit2: alwaysO

Bit8: alwaysO

The parameter var points to a 4-byte sequence (0x0, 0x0, 0x0, 0x0) followed by the variable name (as a null-
terminated string) in the data region, unless SYS=1.

0x0912 IEVTWIND FLAGS, VAR, MIN, MAX

This input-triggered event condition op defines a window outside condition on the variable var. Flags are a bit-
field (pertaining to var) of:

Bit0: Reserved (0)

Bit1: 0= User Variable (UV), 1 = System Variable/Parameter (SYS)
Bit2: alwaysO

Bit8: alwaysO

The parameter var points to a 4-byte sequence (0x0, 0x0, 0x0, 0x0) followed by the variable name (as a null-
terminated string) in the data region, unless SYS=1.

0x0930 IEVTCC N, FLAGS

This input-triggered event action op implements clear counter. N represents the counter number to clear. Flags
are a bit-field of:

Bit0: alwaysO

Bit1: 1 =counter group ASCx (ASC)
Bit 2: 1 =counter group AMCx (AMC)
Bit 3: 1 =counter group MSCx (MSC)
Bit4: 1 =counter group MMCx (MMC)

34-2201 Allied Motion Programmability Standard | Virtual Machine m

»dlied Motion

0x0931 IEVTED N, FLAGS

This input-triggered event action op implements enable/disable event for input events. N represents the event ID
to alter. Flags are a bit-field of:

Bit0: 0 =disable event (D), 1 = enable event (E)
0x0932 IEVTCPY SRCFLAGS, SRC, DESTFLAGS, DEST

This input-triggered event action op implements copy. Both srcflags and destflags are a bit-field (pertaining to src
and dest, respectively) of:

Bit0: Reserved (0)
Bit1: 0= User Variable (UV), 1 = System Variable/Parameter (SYS)
Bit2: alwaysO

The parameters src and dest points to a 4-byte sequence (0x0, 0x0, 0x0, 0x0) followed by the variable name (as a
null-terminated string) in the data region, unless SYS=1.

0x0933 IEVTST POB, FLAGS

This input-triggered event action op implements start. Flags are a bit-field (pertaining to pob) of:

Bit0: Reserved (0)
Bit1: alwaysO
Bit2: alwaysO

The parameter pob points to a 4-byte sequence (0x0, 0x0, 0x0, 0x1) followed by a POB name (as a null-terminated
string) in the data region.

0x0934 IEVTQ FLAGS, VAR, N

This input-triggered event action op implements queue. Flags are a bit-field (pertaining to var) of:

Bit0: Reserved (0)
Bit 1: 0= User Variable (UV), 1 = System Variable/Parameter (SYS)
Bit2: alwaysO

The parameter var points to a 4-byte sequence (0x0, 0x0, 0x0, 0x0) followed by the variable name (as a null-
terminated string) in the data region, unless SYS=1.

34-2201 Allied Motion Programmability Standard | Virtual Machine

»dlied Motion

0x0A00 CEVTDEF N, PORT

This op begins the definition of a communication-triggered event. N is the event ID (1=CEVT1 through 8=CEVT8)
and port is the port number associated with the event.

Condition ops (0xOA10-0x0A2F) and/or Action ops (0xOA30-0x0A4F) follow until a CEVTEND op.
0x0A01 CEVTEND

This op ends the definition of an communication-triggered event.

0x0A02 CEVTE N

This op enables the communication-triggered event numbered n.

0x0A03 CEVTD N

This op disables the communication-triggered event numbered n.

0x0A10 CEVTID N, ID1, ID2, ..., IDN

This communication-triggered event op implements the id condition. The n argument specifies the number of
matching ids to follow.

0xX0A30 CEVTED N, FLAGS

This communication-triggered event action op implements enable/disable event for communication events. N
represents the event ID to alter. Flags are a bit-field of:

Bit0: 0 =disable event (D), 1 = enable event (E)

34-2201 Allied Motion Programmability Standard | Virtual Machine m

»dlied Motion

0Xx0A31 CEVTCPY SRC, FLAGS, DEST, DESTFLAGS

This communication-triggered event action op implements copy. Src represents the field number index within the
message.

Flags is a bit-field (pertaining to dest) of:

Bit0: 1=typeisint32
Bit1l: 1=typeisfloat32

Destflags is a bit-field (pertaining to dest) of:

Bit0: Reserved (0)
Bit1: 0= User Variable (UV), 1 = System Variable/Parameter (SYS)
Bit2: alwaysO

The parameter dest points to a 4-byte sequence (0x0, 0x0, 0x0, 0x0) followed by the variable name (as a null-
terminated string) in the data region, unless SYS=1.

0X0A32 CEVTST QFLAGS, POB, FLAGS

This communication-triggered event action op implements start.
Qflags are a bit-field of:

Bit0: 1=drop
Bitl: 1=queue

Flags are a bit-field (pertaining to pob) of:

Bit0: Reserved (0)
Bit1: alwaysO
Bit2: alwaysO

The parameter pob points to a 4-byte sequence (0x0, 0x0, 0x0, 0x1) followed by a POB name (as a null-terminated
string) in the data region.

34-2201 Allied Motion Programmability Standard | Virtual Machine

Pdlied Motion

CALLX OFFSET TABLE

0x0000 move to:

0x0001 move at: to:

0x0002 move to: rate:

0x0003 move at: to: rate:

0x0004 move to: acc: dec:

0x0005 move at: to: acc: dec:

0x0010 move for:

0x0011 move at: for:

0x0012 move for: rate:

0x0013 move at: for: rate:

0x0014 move for: acc: dec:

0x0015 move at: for: acc: dec:

0x0040 move trap to:

0x0042 move trap to: rate:

0x0044 | move trap to: acc: dec:

0x0050 | move trap for:

0x0052 move trap for: rate:

0x0054 | move trap for: acc: dec:

0x0060 move trap to: in:

0x0070 | move trap for:in:

0x0080 move alter to: rate:

0x0090 move alter for: rate:

0x00A0 | cmove (unsymmetric, to:)

0x00A1 | cmove (symmetric, to:)

0x00BO | cmove (unsymmetric, for:)

0x00B1 | cmove (symmetric, for:)

0x00CO | pbv enter

0x00C1 | pbv exit

0x00C2 | pbv at: rate:

0x00C3 | pbv at:

0x00C4 | pbv for:

34-2201 Allied Motion Programmability Standard | Virtual Machine m

T
llied Motion

POB EXAMPLES

| HOMING TO A HARD STOP

HOME_HARDSTOP

// enter PBV mode

pbv enter;

// set torque limit to 2 Nm; save away previous torque limit
_TLIM = LIM_TRQ;

LIM _TRQ = 2;

// start moving towards hard stop
pbv at: 2 rate: 100;

// wait until we hit the hard stop
wait until OVER_TRQ;

// wait a bit more to fully engage the hard stop
wait 300 ms;

// stop “here” and exit PBV mode
pbv at: o;

pbv exit;

// zero the following error

zero following error;

// call this position “@”

set target position: 0;

// restore torque limit

LIM TRQ = _TLIM;

end;

| SIMPLE INDEXER

// Inputs #1 through #3 select the index length

// Input #4 triggers the index

[index]

wait for rise of 4;

// mask off the lower 3 bits of INS (that holds the state of the inputs)
// and use those bits to index into a vector array

move trap for: VEC1[INS & 7];

wait for in position;

goto index;

34-2201 Allied Motion Programmability Standard | POB Examples m

Pdlied Motion

| FLYING SHEAR

FLYING_SHEAR

// Global variables:

// AD_DISP accel/decel displacement (to gear up/down within)
// CUT_DISP the cut displacement (pre-cut and post-cut)

// TIME_RET the time to return to the home position

// CUT_LEN the length of the product

//

// enter following mode

follow enter;

// clear the master dwell variable

_MDWELL = 0;

[cutloop]

// clear the first slave and master counters

clear (ASC1, AMC1);

// gear up to line speed after some number of master counts have occurred

gear at: 1 : 1 in: AD_DISP after: _MDWELL;

// pre-cut displacement

wait master CUT_DISP;

// trigger the cut

pulse output 1 for 100 ms;

// post-cut displacement

wait master CUT_DISP;

// gear to © speed before we make our return to home

gear at: @ : 1 in: AD_DISP;

// move back home

// home is magically ASC1 counts back, since ASC1 was cleared before the slave motion started
move slave by: -ASC1 in: TIME_RET;

// compute how long to dwell next time based upon the length of the material desired

// since CUT_LEN is the desired number of master counts we are supposed to cut to, and
// AMC1 holds how far we went this time, then the difference is how much we should wait
// before starting the next gear-up

_MDWELL = CUT_LEN - AMC1;

goto cutloop;

34-2201 Allied Motion Programmability Standard | POB Examples

Pdlied Motion

| ROTARY KNIFE

ROTARY_KNIFE

// Global variables:

// AD_DISP accel/decel displacement (to gear up/down within)
// CUT_DISP the cut displacement

// TIME_RET the time to return to the home position

// CUT_LEN the length of the product

//

// enter following mode

follow enter;

// clear the master dwell variable

_MDWELL = 0;

[cutloop]

// clear the first slave modulo counter and the first master counter

clear (MSC1, AMC1);

// gear up to line speed after some number of master counts have occurred

gear at: 1 : 1 in: AD_DISP after: _MDWELL;

// cut displacement

wait master CUT_DISP;

// gear to © speed before we make our return to home

gear at: @ : 1 in: AD_DISP;

// compute distance to the home position

// home is magically MODS-MSC1 counts forward, since MSC1 was cleared before the slave motion started
_TOHOME = MODS - MSC1;

move slave by: TOHOME in: TIME_RET;

// compute how long to dwell next time based upon the length of the material desired
_MDWELL = CUT_LEN - AMC1;

goto cutloop;

34-2201 Allied Motion Programmability Standard | POB Examples

Pdlied Motion

| LiMIT SWiTcH HOMING

POSLIM_HOMING

// This POB homes an axis using a positive limit switch in conjunction with an index pulse
// Operation is as follows:

// 1. Head positive until the limit switch (one input 1) is encountered

// 2. Stop, turn around and locate the first index pulse in the negative direction
// 3. Stop and call that position 0.0

//

// enter PBV mode

pbv enter;

// start moving positive

pbv at: 10;

// wait until we see the limit switch

wait for rise of 1;

// and stop

pbv stop within: 0.1;

// exit PBV mode

pbv exit;

// move to index pulse (first in the negative direction is always held in TPOS_NZ)
move trap to: TPOS_NZ;

// wait until we’re there

wait for in position;

// call it e.e

set target position: 0;

// done

end;

34-2201 Allied Motion Programmability Standard | POB Examples

